Refereed Journal Articles

  1. Hay, H., Trinh, A., & Matsuyama, I. (2020). Powering the Galilean Satellites with Moon‐moon Tides. Geophys. Res. Lett., 47.
  2. Bouley, S., Keane, J. T., Baratoux, D., Langlais, B., Matsuyama, I., Costard, F., et al. (2020). A thick crustal block revealed by reconstructions of early Mars highlands. Nature Geoscience, 13(2), 105–109.
  3. Cruikshank, D. P., Umurhan, O. M., Beyer, R. A., Schmitt, B., Keane, J. T., Runyon, K. D., et al. (2019). Recent cryovolcanism in Virgil Fossae on Pluto. Icarus, 330, 155–168.
  4. Hay, H. C. F. C., & Matsuyama, I. (2019). Tides Between the TRAPPIST-1 Planets. The Astrophysical Journal, 875, 22.
  5. Nimmo, F., & Matsuyama, I. (2019). Tidal dissipation in rubble-pile asteroids. Icarus, 321, 715–721.
  6. Hay, H. C. F. C., & Matsuyama, I. (2019). Nonlinear tidal dissipation in the subsurface oceans of Enceladus and other icy satellites. Icarus, 319, 68–85.
  7. Matsuyama, I., Beuthe, M., Hay, H. C. F. C., Nimmo, F., & Kamata, S. (2018). Ocean tidal heating in icy satellites with solid shells. Icarus, 312, 208–230.
  8. Hemingway, D. J., & Matsuyama, I. (2017). Isostatic equilibrium in spherical coordinates and implications for crustal thickness on the Moon, Mars, Enceladus, and elsewhere. Geophys. Res. Lett., 44, 7695–7705.
  9. Hay, H. C. F. C., & Matsuyama, I. (2017). Numerically modelling tidal dissipation with bottom drag in the oceans of Titan and Enceladus. Icarus, 281, 342–356.
  10. Keane, J. T., Matsuyama, I., Kamata, S., & Steckloff, J. K. (2016). Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia. Nature, 540, 90–93.
  11. Zuber, M. T., Smith, D. E., Neumann, G. A., Goossens, S., Andrews-Hanna, J. C., Head, J. W., et al. (2016). Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission. Science, 354, 438–441.
  12. Bouley, S., Baratoux, D., Matsuyama, I., Forget, F., Séjourné, A., Turbet, M., & Costard, F. (2016). Late Tharsis formation and implications for early Mars. Nature, 531, 344–347.
  13. Siegler, M. A., Miller, R. S., Keane, J. T., Laneuville, M., Paige, D. A., Matsuyama, I., et al. (2016). Lunar true polar wander inferred from polar hydrogen. Nature, 531, 480–484.
  14. Matsuyama, I., Nimmo, F., Keane, J. T., Chan, N. H., Taylor, G. J., et al. (2016). GRAIL, LLR, and LOLA constraints on the interior structure of the Moon. Geophysical Research Letters, 1–11.
  15. Kamata, S., Matsuyama, I., & Nimmo, F. (2015). Tidal resonance in icy satellites with subsurface oceans. Journal of Geophysical Research: Planets, 120, 1528–1542.
  16. Matsuyama, I., Nimmo, F., & Mitrovica, J. X. (2014). Planetary Reorientation. Annual Review of Earth and Planetary Sciences, 42, 605–634.
  17. Keane, J. T., & Matsuyama, I. (2014). Evidence for Lunar True Polar Wander, and a Past Low-Eccentricity, Synchronous Lunar Orbit. Geophysical Research Letters, 41.
  18. Williams, J. G., Konopliv, A. S., Boggs, D. H., Park, R. S., Yuan, D.-N., Lemoine, F. G., et al. (2014). Lunar interior properties from the GRAIL mission. Journal of Geophysical Research: Planets, 119.
  19. Matsuyama, I. (2014). Tidal dissipation in the oceans of icy satellites. Icarus, 242, 11–18. doi:10.1016/j.icarus.2014.07.005
  20. Chan, N.-H., Mitrovica, J. X., Daradich, A., Creveling, J. R., Matsuyama, I., & Stanley, S. (2014). Time-dependent rotational stability of dynamic planets with elastic lithospheres. Journal of Geophysical Research, 119(1), 169–188. doi:10.1002/2013JE004466
  21. Matsuyama, I. (2013). Fossil figure contribution to the lunar figure. Icarus, 1–4. doi:10.1016/j.icarus.2012.10.025
  22. Andrews-Hanna, J. et al. (2013). Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry. Science. doi:10.1126/science.1231753
  23. Creveling, J. R. et al. (2012). Mechanisms for oscillatory true polar wander. Nature, 244-248. doi:10.1038/nature11571
  24. Matsuyama, I., & Nimmo, F. (2011). Reorientation of Vesta: Gravity and tectonic predictions. Geophysical Research Letters, 38(14), L14205. doi:10.1029/2011GL047967
  25. Chan, N.-H. et al. (2011). The rotational stability of a convecting earth: assessing inferences of rapid TPW in the late cretaceous. Geophysical Journal International, 187, 1319–1333. doi:10.1111/j.1365-246X.2011.05245.x
  26. Chan, N.-H. et al. (2011). The rotational stability of a convecting Earth: the Earth's figure and TPW over the last 100 Myr. Geophysical Journal International, 187, 773–782. doi:10.1111/j.1365-246X.2011.05174.x
  27. Matsuyama, I., & Bills, B. G. (2010). Global contraction of planetary bodies due to despinning: application to Mercury and Iapetus. Icarus, 209, 271–279. doi:10.1016/j.icarus.2010.05.011
  28. Matsuyama, I., & Manga, M. (2010). Mars without the equilibrium rotational figure, Tharsis, and the remnant rotational figure. Journal of Geophysical Research, 115(E12), E12020. doi:10.1029/2010JE003686
  29. Matsuyama, I. et al. (2010). The rotational stability of a triaxial ice‐age Earth. Journal of Geophysical Research, 115, B05401. doi:10.1029/2009JB006564
  30. Matsuyama, I., & Nimmo, F. (2009). Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero eccentricity, despinning, and reorientation. Journal of Geophysical Research, 114, E01010. doi:10.1029/2008JE003252
  31. Matsuyama, I., Johnstone, D., & Hollenbach, D. (2009). Dispersal of Protoplanetary Disks by Central Wind Stripping. Astrophysical Journal, 700, 10–19. doi:10.1088/0004-637X/700/1/10
  32. Kite, E. S. et al. (2009). True Polar Wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars. Earth and Planetary Science Letters, 280, 254–267. doi:10.1016/j.epsl.2009.01.040
  33. Matsuyama, I., & Nimmo, F. (2008). Tectonic patterns on reoriented and despun planetary bodies. Icarus, 195, 459–473. doi:10.1016/j.icarus.2007.12.003
  34. Schenk, P. M., Matsuyama, I., & Nimmo, F. (2008). True polar wander on Europa from global-scale small-circle depressions. Nature, 453, 368–371. doi:10.1038/nature06911
  35. Daradich, A. et al. (2008). Equilibrium rotational stability and figure of Mars. Icarus, 194, 463–475. doi:10.1016/j.icarus.2007.10.017
  36. Matsuyama, I., & Nimmo, F. (2007). Rotational stability of tidally deformed planetary bodies. Journal of Geophysical Research, 112, E11003. doi:10.1029/2007JE002942
  37. Nimmo, F., & Matsuyama, I. (2007). Reorientation of icy satellites by impact basins. Geophysical Research Letters, 34, L19203. doi:10.1029/2007GL030798
  38. Matsuyama, I., Nimmo, F., & Mitrovica, J. X. (2007). Reorientation of planets with lithospheres: The effect of elastic energy. Icarus, 191, 401–412. doi:10.1016/j.icarus.2007.05.006
  39. Perron, J. T. et al. (2007). Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature, 447, 840–843. doi:10.1038/nature05873
  40. Matsuyama, I., Mitrovica, J. X., Manga, M., Perron, J. T., & Richards, M. A. (2006). Rotational stability of dynamic planets with elastic lithospheres. Journal of Geophysical Research, 111, E02003. doi:10.1029/2005JE002447
  41. Mitrovica, J. X., Wahr, J. M., Matsuyama, I., Paulson, A., & Tamisiea, M. E. (2006). Reanalysis of ancient eclipse, astronomic and geodetic data: A possible route to resolving the enigma of global sea-level rise. Earth and Planetary Science Letters, 243, 390–399. doi:10.1016/j.epsl.2005.12.029
  42. Mitrovica, J. X., Wahr, J. M., Matsuyama, I., & Paulson, A. (2005). The rotational stability of an ice-age earth. Geophysical Journal International, 161, 491–506. doi:10.1111/j.1365-246X.2005.02609
  43. Matsuyama, I., Johnstone, D., & Murray, N. W. (2003). Halting Planet Migration by Photoevaporation from the Central Source. Astrophysical Journal, 585, L143–L146. doi:10.1086/374406
  44. Matsuyama, I., Johnstone, D., & Hartmann, L. (2003). Viscous Diffusion and Photoevaporation of Stellar Disks. Astrophysical Journal, 582, 893–904. doi:10.1086/344638
  45. Hogerheijde, M. R. et al. (2003). Indications for Grain Growth and Mass Decrease in Cold Dust Disks around Classical T Tauri Stars in the MBM 12 Young Association. Astrophysical Journal, 593, L101–L104. doi:10.1086/378345