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We review the current state of knowledge regarding Pluto’s heliocentric or-
bital motion. Pluto’s orbit is unusually eccentric and inclined to the ecliptic,
and overlaps the orbit of Neptune. Consequently, Pluto suffers significant
planetary perturbations. The current uncertainties in Pluto’s orbital pa-
rameters and their implications for its long-term dynamical evolution are
reviewed. Numerical integrations of increasingly long times indicate that
Pluto exists in a dynamical niche consisting of several resonances which en-
sures its macroscopic stability over timescales comparable to the age of the
Solar system. In particular, the 3:2 orbital period resonance with Neptune
protects it from close encounters with the giant planets. Furthermore, Pluto’s
motion is formally chaotic, with a Lyapunov timescale of O(107) years. The
extent and character of this dynamical niche is described. The emplacement
of Pluto in this niche requires some dissipative mechanism in the early his-
tory of the Solar system. We discuss some plausible scenarios for the origin
of this unusual orbit.

I. INTRODUCTION

The heliocentric motion of Pluto is of great interest for several reasons.
First, Pluto’s orbit departs very significantly in character from the usual
well-separated, near-circular and co-planar orbits of the major planets
of the Solar system. During one complete revolution about the Sun
[in a period of 248 years at a mean distance of about 40 astronomical
units (AU)], Pluto’s heliocentric distance changes by almost 20 AU
from perihelion to aphelion, and the planet makes excursions of 8 AU
above and 13 AU below the plane of the ecliptic (see Figure 1). For
approximately two decades in its orbital period, Pluto is closer to the
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Sun than Neptune. Furthermore, Pluto is accompanied in its orbit
about the Sun by a large satellite, Charon; the large mass ratio of
Charon to Pluto makes this truly a binary planet. The origin and
dynamical stability of this binary planet in a very peculiar orbit in the
outer reaches of the planetary system is a fascinating question in Solar
system dynamics and may hold clues to planet formation processes in
the outer Solar system. Pluto’s orbital history is also of importance
for the geophysical and climate evolution of this system (cf. chapters
in BULK PROPERTIES and ATMOSPHERES).

Pluto’s* orbital period oscillates about a mean value which is ex-
actly 3/2 that of Neptune. Owing to this orbital resonance and Pluto’s
large eccentricity and inclination, the usual analytical methods of ce-
lestial mechanics have been of limited use in determining the long-term
motion of Pluto under the influence of perturbations from the giant
planets. Therefore, most studies of Pluto’s orbital dynamics have in-
volved numerical integrations of increasingly long times. The enormous
increase in computing speed facilitated by digital computers and faster
numerical integration algorithms in recent years now allows the explo-
ration of planetary dynamics over billion year timescales with relative
ease. We now know that Pluto’s long-term motion exhibits a rich vari-
ety of dynamical phenomena: the strong mean motion resonance with
Neptune, several resonances and near-resonances with the secular mo-
tions of the giant planets, as well as evidence of deterministic chaos.
The latter is especially curious, because numerical simulations also sug-
gest that over timescales comparable to the age of the Solar system,
Pluto is secure from macroscopically large changes in its orbital pa-
rameters. This complex dynamics has recently motivated two plausible
scenarios for the origin of such an orbit. It is likely that Pluto formed
in an ordinary near-circular, co-planar orbit beyond Neptune and was
transported to its current peculiar orbit by dynamical processes in the
early history of the Solar system. These new theories are a striking
departure from the early speculations that Pluto may be an escaped
Neptunian satellite.

This chapter reviews the current state of knowledge about the orbit
of Pluto and is organized as follows. In Section II we describe the
history of Pluto’s orbit determination and discuss the quality of the
present ephemerides and prospects for improvement in the future. In
Section III we describe Pluto’s long-term orbital dynamics. In Section
IV we discuss the mechanisms that determine Pluto’s orbital stability.
Section V is a review of the theories for the origin of Pluto’s orbit. In
Section VI we provide a summary of the chapter and indicate avenues
for future studies.

* For brevity, we will refer to the heliocentric motion of the center-of-mass
of the Pluto-Charon binary as simply that of ‘Pluto’.
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II. CURRENT ORBIT

Although Pluto was discovered in 1930, there exist prediscovery pho-
tographs that provide its positions back to 1914. Thus Pluto has been
observed for nearly 80 years, or 1/3 of its orbital period. Recently up-
dated osculating, heliocentric elements in the J2000 coordinate system
are listed in Table 1, and use a Sun/Pluto mass ratio of 135,000,000
(Beletic et al. 1989). They are based on approximately 900 astromet-
ric positions observed over nearly eight decades. In addition to the
six Keplerian elements (semimajor axis a, eccentricity e, inclination i,
node Ω, argument of perihelion ω, and mean anomaly M), some aux-
iliary quantities (mean motion n, orbital period, perihelion distance q,
and aphelion distance Q) are also listed. These elements are affected
by short-period planetary perturbations. For example, if the short-
period effects are removed, the average (over a few centuries) orbital
period is 248 yr. Pluto’s most recent perihelion passage occurred on
5th September 1989 with a heliocentric distance of 29.6556 AU.

Orbit determination for observation times less than an orbit period
gives best accuracies along the observed arc of the orbit and degraded
accuracies elsewhere. The difficulties stemming from an incomplete
orbit are complicated further by systematic star catalog errors. Pluto’s
orbit suffers from nonuniform accuracy as shown by the uncertainties
in Table 1: the semimajor axis is less well known than the perihelion
distance, the perihelion direction and mean anomaly are coarser than
the other angular elements (but the mean longitude, λ = ω + Ω + M ,
is known nearly an order of magnitude better, 0.00015◦), and the error
ellipse for the pole direction is elongated by 2-to-1.

The uneven orbit accuracy shows up in predictions of Pluto’s fu-
ture position. Predictions only a decade beyond the last observation
are noticeably in error (Seidelmann et al. 1980, Standish 1994). At
present the least well known coordinate is the radial distance with an
uncertainty which exceeds 10,000 km. A future spacecraft mission to
Pluto would benefit from high accuracies for the ephemeris. Lower ac-
curacies result in pointing and arrival time uncertainties. To maintain
the highest accuracy in the future, it is necessary to make positional
observations and to update the orbit regularly.

III. LONG TERM EVOLUTION

Like the orbit of the innermost planet Mercury, the orbit of distant
Pluto is distinguished from that of the other planets by the magni-
tude of its eccentricity and inclination. Figure 1 shows the orbits of
the five outer planets. The extent of both radial and out-of-ecliptic-
plane excursions of Pluto far exceeds those of all other major planets.
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Table 1: Pluto’s orbital elements?

epoch MJD 40400.0
a [AU] 39.77445± 41
e 0.2533182± 55
i [deg] 17.13487± 3
Ω [deg] 110.28631± 19
ω [deg] 112.98240± 130
M [deg] 331.37659± 130
n [deg/day] 0.00392914± 6
period [yr] 250.8502± 40
q [AU] 29.69886± 11
Q [AU] 49.85004± 73

? from the DE 245 planetary and lunar ephemeris, by Standish, Newhall
and Williams (1993, personal communication); uncertainties are from
the solution covariance matrix.
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Pluto’s perihelion distance is smaller than Neptune’s mean heliocentric
distance — indeed its present perihelion (29.7 AU) is slightly smaller
than Neptune’s (29.8 AU, both with short-period variations removed).
The question naturally arises whether close approaches between Pluto
and Neptune prevent orbital stability. The large eccentricity and in-
clination and its Neptune-crossing orbit make Pluto a difficult subject
for studies by analytical perturbation theory. Consequently, numeri-
cal integrations have dominated the studies of Pluto’s orbit evolution.
The length of these integrations is limited by the speed of available
computers and integration methods. Over the past three decades the
succession of integrations with longer and longer times and more re-
alistic physical models is testimony to the improvement in computer
speed and innovative numerical integration algorithms. A listing of
these numerical integrations is given in Table 2.

The variations of Pluto’s orbital elements over 40,000 years and 8
million years are plotted in Figures 2 and 3, respectively.* The orbital
variations are due to the gravitational effects of the other planets, and
it is evident that the perturbations occur on several different timescales.

Planetary perturbations can be divided into short- and long-period
effects. The short-period perturbations depend on the positions of the
bodies in their orbits, i.e. on the mean anomalies or mean longitudes.
The longer-period effects, commonly called secular perturbations, in-
clude the secular motions of nodes and perihelia and long-period varia-
tions in nodes, perihelia, eccentricities, and inclinations. Pluto exhibits
resonances with both types of perturbations.

A description of the long-term dynamics of Pluto’s orbit is a tale
of resonances. A resonance is associated with some repetitive geomet-
rical pattern of motion that arises from a low-integer commensurability
of some pair of frequencies. (For example, Pluto’s average orbital pe-
riod is 3/2 Neptune’s; as a result, the relative orbital phases of Pluto
and Neptune recur periodically.) This causes the perturbative forces
to act in nearly the same phase at each repetition of the geometrical
pattern. Mathematically, this situation leads to a serious problem as
the usual linear perturbation theory for the analysis of orbital pertur-
bations breaks down due to the notorious problem of “small divisors”
(see, for example, Brown and Shook 1933). Each resonance (or each pe-
riodic perturbation) has an associated “resonance angle” which is made
up of a linear combination of angular orbital parameters. The motion
of a pendulum is commonly used as an analogy for resonances. For res-
onant motion the resonance angle oscillates (librates) about some value

* The plots in Figures 2–6 were obtained from direct N-body numerical in-
tegrations of the five outer planets’ motion using recently updated planetary
parameters and initial conditions provided by Myles Standish. The integra-
tions were performed using a mixed variable symplectic integrator (Wisdom
and Holman 1991).
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Table 2: Numerical Integrations of Pluto

Authors Pub Date Span Comp Time

Cohen & Hubbard 1965 120 kyr 3 d
Cohen et al. 1967 300 kyr
Williams & Benson 1971 4.5 Myr 1 hr
Cohen et al. 1973 1 Myr
Kinoshita & Nakai 1984 5 Myr 4 hr
Milani et al. 1986 9.3 Myr
Applegate et al. 1986 217 Myr 14 d
Sussman & Wisdom 1988 845 Myr
Richardson & Walker 1988 1 Myr 65 d
Milani et al. 1989 100 Myr
Quinn et al. 1991 3 Myr 65 d
Wisdom & Holman 1991 1 Byr 14 d
Sussman & Wisdom 1992 100 Myr 40 d
Nakai & Kinoshita 1994 1.3 Byr
Kinoshita & Nakai 1995 5.5 Byr 110 d
Levison & Stern 1995 100 Myr
Nakai & Kinoshita 1995 11.2 Byr



HELIOCENTRIC ORBIT 7

— like a swinging pendulum — and its averaged time derivative van-
ishes; for nonresonant motion this angle circulates – like a pendulum
rotating over the top. Stronger resonances have shorter libration peri-
ods and broader libration regions (i.e. a larger range of orbital elements
which will allow libration). The periods of nonresonant circulation and
resonant libration will appear in a Fourier analyses of the perturbed
orbital parameters. [See Malhotra (1994) for a recent more detailed
review of resonances in Solar system dynamics.]

A. The 3:2 Resonance

Cohen & Hubbard (1965) integrated the five outer planets for 120,000
yr and discovered that the orbit of Pluto is locked in a 3:2 mean mo-
tion resonance (commensurability) with Neptune. During every five
centuries, Pluto makes two revolutions and Neptune three, and the
two planets pass one another once. After five centuries the geometric
pattern nearly repeats (see Figure 4). A resonance angle, φ, can be
defined using the mean longitudes of Pluto and Neptune, λ and λN

respectively, and the longitude of Pluto’s perihelion, $ = Ω + ω,

φ = 3λ− 2λN −$

Cohen & Hubbard found that this argument librates about 180◦ with an
amplitude of 76◦ and a period of 19,700 yr. (These numbers have been
revised in more recent integrations with improved planetary parameters
and numerical models; see below and section III-D.) The importance of
the libration about 180◦ can be seen by writing the resonance argument
as

φ = M − 2(λN − λ),

where M = λ−$ is Pluto’s mean anomaly. For Pluto to be at perihe-
lion (M = 0) while passing Neptune (λ ≈ λN ), the resonance argument,
φ, would need to approach zero. Thus the libration of φ about 180◦

prohibits very close approaches between Neptune and Pluto and causes
Pluto’s conjunctions with Neptune (i.e., the configuration when the two
planets share the same heliocentric longitude) to be closer to Pluto’s
aphelion than perihelion. Another way to understand the resonance
protection is to note that the libration of φ about 180◦ means that
at perihelion (M = 0), Pluto’s mean longitude is near 90◦ away from
Neptune’s longitude, thereby avoiding conjunctions of the two planets
when Pluto crosses the orbit of Neptune. This is shown in Figure 4 in
a coordinate system rotating with Neptune’s mean angular velocity.

Cohen & Hubbard showed that over approximately five-century
cycles the distance between Pluto and Neptune has three minima, the
smallest of them (18 AU) occurs when the planets have similar helio-
centric longitudes and Pluto is near aphelion. The other two minima
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occur closer to Pluto’s perihelion (at the small loops in Figure 4), but
the longitudes of the two planets are very different and the distances
are larger. Figure 5 illustrates how the distance between Pluto and
Neptune changes during the 20 kyr libration. It is interesting to note
that Pluto makes closer (and more frequent) approaches to Uranus than
to Neptune (see Figure 6). However, the Pluto-Uranus distance varies
so rapidly in successive close approaches that the Uranian short-period
perturbations are periodic over only a few thousand years and do not
accumulate significantly over longer time scales.

Subsequent 300 kyr and 1 Myr integrations (Cohen et al. 1967,
1973) revised the libration amplitude of φ to 80◦ and slightly short-
ened the libration period. Even longer numerical integrations since
these original studies have confirmed the 3:2 resonance libration and
the protection it provides against close approaches with Neptune (see
Figure 7). These integrations find slightly different values of the libra-
tion amplitude and period of φ, and are discussed in more detail in
section III-D below.

B. The Argument-of-perihelion Libration

The major planets exhibit sizable “secular” variations on time scales
from 46 kyr to 2 Myr. These variations are not associated with the fast
time scale of the orbit periods, but with the much slower precession
of the perihelia and nodes. During Cohen & Hubbard’s original 120
kyr integration the argument of Pluto’s perihelion, ω, moved only 1.4◦.
Because the present perihelion and aphelion are 16◦ out of the plane of
the ecliptic, the possibility remained that the 3:2 libration would not
survive for times comparable to either the circulation of the perihelion
or the secular perturbations. Even if the 3:2 resonance remained locked
in libration, the possibility existed that the closest approach distance
would be reduced when the encounter point got closer to the ecliptic
plane. But commenting on the very slow argument-of-perihelion motion
during 120 kyr, Brouwer (1966) suggested another possibility: ω might
librate rather than circulate.

Kozai (1962) had shown that in the circular restricted three body
problem, stationary and librating solutions for ω were possible for
large inclinations of the test particle. [For a given mean motion, the
stationary-ω solution lies on a curve in the eccentricity-inclination (e, i)
plane, and belongs to a class of periodic orbits of the third kind in the
three-dimensional restricted three body problem (see e.g., Jefferys &
Standish 1966, 1972).] An early attempt (Hori & Giacaglia 1968) to an-
alytically compute Pluto’s orbit evolution based on three-body theory
(Sun, Neptune, Pluto) failed to find the ω libration. However, sub-
sequent work using semianalytic techniques and multiple perturbing
planets did confirm the ω libration (Nacozy & Diehl 1974, 1978a,b).
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It turns out that in the Sun-Neptune-Pluto three-body system, Pluto’s
eccentricity and inclination lie far away from the stationary ω curve in
the (e, i) plane, but inclusion of the secular effects of the other giant
planets in the perturbation potential for Pluto shifts this curve signif-
icantly, so that the argument of perihelion rate vanishes near Pluto’s
observed eccentricity and inclination.

A numerical integration of 4.5 Myr undertaken by Williams & Ben-
son (1971) prior to Nacozy & Diehl’s analytical work had already de-
termined that the argument of perihelion librated around 90◦ with a 4
Myr period and a 24◦ amplitude. In the early days of digital comput-
ing, these authors had to use numerical averaging techniques to keep
the computer usage modest. Thus, their numerical integration was
in essence the same as the subsequent analytic solution of Nacozy &
Diehl. The first direct numerical integration (no averaging techniques
or semianalytic treatment) with a long enough span to confirm the ω
libration was that of Kinoshita & Nakai (1984) who integrated the five
outer planets for a time span of 5 Myr. They found that the ω libration
had a 3.8 Myr period and an amplitude of 23◦.

The 4 Myr periodicity of Pluto’s argument of perihelion is accom-
panied by corresponding oscillations of the eccentricity and inclination,
as expected from secular perturbation theory (Kozai 1962). The eccen-
tricity and inclination variations maintain a phase difference of 180◦

from each other, and a 90◦ phase difference from ω. The peak-to-peak
variation of Pluto’s inclination is 2◦ while the eccentricity varies by
0.05. The phase relationships ensure that the extrema of these e and
i variations (one a maximum and the other a minimum) occur when
ω = 90◦. In other words, when the aphelion or perihelion contracts
towards the Sun, its latitude increases.

The libration of ω keeps the closest approach point out of the plane
of Neptune’s orbit making the minimum distance larger than it would
otherwise be. Both, the 3:2 mean motion resonance libration and the
argument of perihelion libration tend to make the cumulative pertur-
bations smaller in magnitude than they would otherwise be. The min-
imum distance between the two planets is 17 AU.

Longer integrations have corroborated the above facts further, and
also found that the ω libration is modulated by a longer period of about
34 million years which causes its amplitude to vary between approxi-
mately 17 degrees and 27 degrees (cf. Applegate et al. 1986). The 34
Myr period is associated with yet another resonance, as discussed in
the next section.

C. Other resonances

Williams & Benson (1971) had suggested that Pluto might exhibit two
other “secular” resonances involving Pluto and Neptune’s node and
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perihelion precession rates and Pluto’s argument of perihelion libra-
tion, namely, (i) a 1:1 commensurability between the libration period
of ω and circulation period of Pluto’s node referred to the longitude of
Neptune’s node, Ω−ΩN , and (ii) a 3:1 commensurability between the
circulation periods of (ΩN − Ω) and ($ − $N ) that would cause the
argument ($ − $N ) − 3(ΩN − Ω) to be in libration. However, their
4.5 Myr integration was not long enough to confirm this possibility.
Since that work, much longer integrations have been performed (100
Myr—11.2 Byr; see Table 2). Long period variations of Pluto’s orbital
elements were reported by Applegate et al. (1986) in their integration.
Some of these were subsequently identified by Milani et al. (1989) with
the secular resonances proposed by Williams & Benson.

Applegate et al. (1986) used a special purpose computer — the
Digital Orrery — to numerically integrate the orbits of the outer planets
(the four giant planets plus a zero-mass test particle representing Pluto)
for approximately 217 Myr centered on the present epoch. This was
a leap by a factor of ∼ 40 over the longest outer planet integrations
prior to that time. Pluto’s orbit was determined to be stable, and the
previously known librations of φ and ω were preserved over this time
span. Some interesting new features also emerged. The ω libration was
found to be modulated with a 34.4 Myr period, its amplitude varying
between ∼17◦ and ∼27◦ (Figure 8). Because the variation of Pluto’s i
and e are strongly coupled through the ω libration, both these orbital
elements also exhibit significant modulation. The 3.8 Myr oscillations
of i were found to be strongly modulated by the 34 Myr period, and
there were indications of even longer period variations; the Poincaré
variable h = e sin$ was reported to exhibit a strong modulation with
a 27 Myr period, as well as a 137 Myr period.

Sussman & Wisdom (1988) extended the Digital Orrery integration
to a time span of 845 Myr. This integration confirmed all the above
features in Pluto’s motion. They also reported a 150 Myr periodicity in
the variations of Pluto’s inclination, and indications of an even longer
period of approximately 600 Myr. In addition, they found evidence of
chaotic behavior (see below).

An independent 100 Myr numerical integration of the outer planets
was performed by the LONGSTOP project (see Nobili 1988 for a review
of this work). In a thorough paper on the analysis of their numerical
solution for Pluto, Milani et al. (1989) confirmed the 1:1 commensura-
bility between the libration period of ω and the circulation period of
(Ω−ΩN ). They referred to this as a “super-resonance”, and identified
the 34.5 Myr modulations with its libration period. This resonance has
a geometrical consequence when considering the inclination of Pluto’s
orbit: the phase of the 3.8 Myr, 2◦ peak-to-peak variation in the in-
clination with respect to the invariable plane is synchronized with the
precession of Neptune’s orbit plane, so that Pluto’s inclination with
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respect to Neptune’s orbit plane has only a 1◦ peak-to-peak variation.
Milani et al. also attempted to determine the origin of the longer

period perturbations and the signature of chaos detected in the Orrery
calculations. They identified a second “super-resonance”: the differ-
ence of the longitudes of perihelion of Pluto and Neptune, ($ −$N ),
circulates with a period of 1.267 Myr, very close to 1/3 of the 3.8 Myr
circulation period of (ΩN − Ω). (Owing to the existence of the first
super-resonance, this guarantees a commensurability with the ω libra-
tion also.) In the LONGSTOP integration, the combination of angles,
($−$N )− 3(ΩN −Ω), was close to but not locked in resonance. This
judgement was based on less than one-half cycle of the resonance an-
gle. However, in the Orrery integration, the average rate of this angle
was indistinguishable from zero within numerical resolution. Milani et
al. have suggested that the origin of the chaos in the Orrery calculation
could be this super-resonance.

More recently, a 100 million year integration has been published by
Levison & Stern (1995), and a long 5.5 billion year integration has been
done by Kinoshita & Nakai (1995). The 20 kyr, 3.8 Myr, and 34 Myr
librations in Pluto’s orbit are confirmed. Kinoshita & Nakai detected
chaotic behavior, but it was not strong enough to be obvious in plots
of the orbital elements, which showed similar behavior throughout the
length of the integration. Nakai & Kinoshita (1995) added a 5.7 Byr
backward integration to the 5.5 Byr forward integration for a total of
11.2 Byr. Both of these spans [as well as an earlier 1.3 Byr integration
(Nakai et al. 1992, Nakai & Kinoshita 1994)] show libration of the
argument ($−$N )−3(ΩN−Ω) about 180◦. For the 11.2 Byr interval,
the libration period is 590 Myr and the amplitude is about 100◦.

D. Comparison of integrations

The accuracy of Pluto’s orbital elements has improved with time,
and our knowledge of the outer planet masses benefited greatly from the
Voyager flybys. The influence of mass correction and orbit uncertainties
on the long-term orbit evolution will be considered here. We will mostly
discuss the 217 Myr integration by Applegate et al. (1986) and the 100
Myr integration of Milani et al. (1989) as these are the longest that
have been analyzed for their fundamental frequencies and amplitudes;
but we will also note comparisons, when appropriate, with the 5.5Byr
integrations by Kinoshita & Nakai (1995) which used recently updated
planetary parameters and initial conditions.

Most of the integrations have used a Neptune mass which is 0.51%
larger than the Voyager value; the value used by Milani et al. is 0.10%
smaller than Voyager’s. To a good approximation the 3:2 libration
frequency scales as the square root of Neptune’s mass. When corrected
to the Voyager value, the libration periods from both Milani et al. and
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Applegate et al. are within 6 yr of 19,912 yr.
The 3:2 libration amplitude is very sensitive to the measured mean

motion. This libration causes Pluto’s mean motion to oscillate by 0.6%
about its mean value. Consequently, the relative amplitude and phase
uncertainty is greater than the relative mean motion uncertainty by
two orders-of-magnitude. For the mean motion uncertainty given in
Table 1, the libration amplitude uncertainty is ∼ 0.1◦. Kinoshita &
Nakai (1995) give a libration amplitude of 81.2◦. From the saturation
distance between two initially neighboring orbits given by Nakai & Ki-
noshita (1995), one can infer an amplitude of 82◦. However, owing to a
small coupling with the ω libration, the 3:2 resonance libration center
oscillates by ∼ 3− 4◦ about 180◦ (Williams & Benson 1971, Milani et
al. 1989). Therefore, the maximum deviation of the resonance angle φ
from 180◦ is larger than the libration amplitude. For the peak devia-
tion, Milani et al. give 84◦, Nakai & Kinoshita (1994) give 84.9◦, while
Applegate et al. and Nakai & Kinoshita (1995) give 86◦. [Levison &
Stern (1995) erroneously attribute this small oscillation of the libration
center to “a random variation” of the libration amplitude.]

The libration period for the argument of perihelion, ω, is near 3.8
Myr. Applegate et al. give 3.796 Myr and Milani et al. find 3.783
Myr. The 0.3% difference is plausibly due to mass differences since the
libration frequency depends upon the square root of a linear combina-
tion of all of the outer planet masses, but the coefficients of the linear
combination are not known. Assuming that the libration frequency is
dominated by Neptune’s mass gives the right size correction, but the
wrong sign.

Because the ω libration is resonant with the difference in the nodes
of Neptune and Pluto, (ΩN − Ω), consideration of the sensitivity of
the node precession rate to outer planet masses should permit recon-
ciliation. This can only be done approximately, but the approximation
from Laplace-Lagrange theory is better known than that for the ω li-
bration. For Pluto’s average nodal rate, both integrations correct to
−0.3502′′/yr. The average longitude of perihelion rate will be the same
(owing to the ω libration). For Neptune’s average nodal rate, the dis-
crepancy between the two integrations is made worse by adding a mass
correction (−0.6921′′/yr for Applegate et al. and −0.6930′′/yr for Mi-
lani et al.). When corrected for mass, the periods for a full cycle of
(ΩN −Ω) are 3.791 Myr and 3.781 Myr, and these should match the ω
libration periods.

Neptune’s average longitude of perihelion rate is also of interest.
Here the agreement is good and the mass-corrected value is 0.6730′′/yr.
The difference in the longitudes of perihelion of Pluto and Neptune,
($ − $N ), makes a complete circulation in 1.267-Myr, very close to
1/3 of the periods of the ω libration and the circulation of (ΩN − Ω).
For the argument ($−$N )− 3(ΩN −Ω), Milani et al. concluded that
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their integration gave circulation (with rate 0.005′′/yr), not libration.
On the basis of a near-zero rate in the Applegate et al. integration,
Milani et al. suggested that this resonance was present in that integra-
tion, and further suggested that it might be linked to chaotic behavior.
Different masses and initial conditions in the two integrations may be
the reason for this apparent conflict. Because the long libration period
of this resonance (590 Myr in Nakai & Kinoshita 1995) implies a nar-
row resonance width, strong sensitivity to masses and initial conditions
is to be expected. Kinoshita & Nakai (1995) and Nakai & Kinoshita
(1995) found a librating argument using recent (DE245) masses and
initial conditions, so we do not need to go through the exercise of
“mass-correcting” the earlier results. It may be that Milani et al. did
not find libration because their integration span was less than half of
the libration period and would have been on the more linear portion
of the sinusoidal curve. We note that the rate on the same segment of
Kinoshita & Nakai’s curve is 0.004′′/yr.

The difficulty in accounting for the differences in these rates in the
two integrations is due to some combination of the approximations used
for the mass sensitivities, the resonances, different initial conditions
for the planets, and modeling. Improved planetary masses and initial
conditions are now available and their use by Kinoshita & Nakai is a
welcome development.

As a final point, we note that in all the integrations the average ω
rate is zero, but its libration (with a 3.8 Myr period) causes the rate
to vary with time. The average ω libration amplitude from the long
integrations is between 21◦ and 22◦, and the 34 Myr modulation causes
it to vary between 17◦ and 27◦. There should be a small influence of
the difference in the assumed Neptune mass, approximately 0.1◦, on
the amplitude.

IV. DYNAMICAL STABILITY AND CHAOS

The dominant perturbations on Pluto’s motion arise from Neptune.
The simplest dynamical model for analyzing these perturbations is to
consider the planar, restricted three-body problem consisting of the Sun
and Neptune as the massive primaries in circular orbits about their cen-
ter of mass, and Pluto as a massless test particle. This is a reasonable
starting point because Pluto’s mass is only ∼ 10−4 that of Neptune,
and Neptune’s eccentricity and inclination are both very small. Fur-
thermore, this model has the important advantage that the structure
of the phase space can be visualized in a 2-D surface-of-section. In
such a picture, quasiperiodic (i.e. secularly stable) motion appears as
points that lie on a smooth, closed curve, while chaotic (or secularly
unstable) motion appears as points that fill up a 2-D region (cf. Henon
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1983). One such surface-of-section is given in Figure 9 which shows
the structure of the phase space in the vicinity of the 3:2 Neptune-
Pluto resonance. In obtaining this surface-of-section, the value of the
Jacobi integral was set equal to that for the observed Pluto but with its
inclination suppressed. [The plot shown is actually a pseudo-surface-
of-section, as the dynamical variables, φ (the resonance angle), and the
semimajor axis, a, are not canonical variables. See Malhotra (1996) for
more details.] It is obvious from this figure that stable librations are
possible only in a narrow region of the phase space. The approximate
half-width of this stable resonance region in terms of semimajor axis is
only ∆a ≈ 0.5AU . In terms of the resonance angle, φ, librations with
amplitude greater than ∼ 130◦ are chaotically unstable on very short
timescales, O(105)yr. The φ libration amplitude of Pluto inferred from
direct numerical integrations is ∼ 82◦, well inside the stable region.
Thus, within this approximate model, Pluto’s motion is bounded and
stable for all time.

The question naturally arises whether the motion remains stable in
the realistic case in which Pluto has a non-zero inclination, Neptune’s
orbit is not on a fixed circle but has a small eccentricity and incli-
nation, and the perturbations of the other planets are also included.
It can be argued that the third degree of freedom — i.e. Pluto’s in-
clination — by itself will not make the orbit unstable as it actually
decreases the magnitude of the perturbations on Pluto. However, tak-
ing account of the non-circular orbit of Neptune and the perturbations
of the other planets introduces new dynamical features whose effects
on Pluto’s long-term orbital stability are more difficult to analyze. The
most significant of these is the ω libration described in the previous sec-
tion. As noted there, the high inclination of Pluto’s orbit together with
the ω libration helps to keep Pluto’s perihelion out of the ecliptic plane,
and therefore helps reduce the magnitude of the planetary perturba-
tions. Other, weaker resonances (i.e. the “super-resonances” in Milani
et al. 1989) that have been identified in the long term numerical inte-
grations of the outer planets also have the effect of increasing the closest
approach distance between Pluto and Neptune. On the other hand, it is
well known that resonance regions are accompanied by chaotic zones in
phase space. (This is evident in the surface-of-section shown in Figure
9.) The relevant question, therefore, is whether the dynamical protec-
tion mechanisms remain robust for a sufficiently wide range of initial
conditions and parameters that encompass those of the actual Solar
system. This question has been addressed in several numerical studies
in recent years and we discuss it in detail below.

A. Lyapunov exponent

Chaotic solutions of a dynamical system are characterized by an ex-
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treme sensitivity to initial conditions which is most directly measured
by the maximal Lyapunov exponent, Γ. Γ measures the rate of expo-
nential divergence of two trajectories in phase space that initially are
arbitrarily close to each other:

Γ = lim
d(0)→0

lim
t→∞

ln[d(t)/d(0)]
t

.

Here d(0) is the initial separation in phase space and d(t) the separation
at time t. In a regular region of phase space, Γ is zero; in a chaotic
region it is finite and positive. In practice, in numerical experiments
one determines the so-called finite-time maximal Lyapunov exponent,

γ =
ln[d(t)/d(0)]

t
,

where d(0) is small but non-zero. Then, at increasingly large t, γ
asymptotically approaches Γ. The associated timescale for chaotic di-
vergence of orbits is TL = Γ−1.

The Lyapunov exponent, γ, for Pluto’s motion has now been de-
termined in several long numerical integrations. In the first of these
(Sussman & Wisdom 1988), the orbits of the four massive outer plan-
ets and a massless “Pluto” were integrated for a period of 845 Myr
using a special purpose computer (the Digital Orrery) and the multi-
step Stormer integrator. The Lyapunov timescale, TL, was found to
be 20 Myr (see Figure 10). The same model was integrated for 1 Byr
using a symplectic mapping method (Wisdom & Holman 1991). In this
work, Pluto’s Lyapunov exponent was reported to be “consistent with”
that obtained in Sussman & Wisdom (1988). More recently, several
different numerical experiments were reported in Sussman & Wisdom
(1992). In one of these, all nine planets were integrated for 100 Myr;
in the other experiments, only the four outer planets plus a massless
Pluto, were integrated for time periods ranging from 250 Myr to 1 Byr.
Each of these runs yielded a positive Lyapunov exponent for Pluto,
with Lyapunov timescale between 10 Myr and 20 Myr. In other inde-
pendent calculations, a Lyapunov timescale of 18 Myr was found in a
1.3 Byr integration by Nakai et al. (1992), and about 20 Myr in two
integrations of 5.5 Byr and 11.2 Byr (Kinoshita & Nakai 1995, Nakai
& Kinoshita 1995). The value of the Lyapunov exponent obtained is
evidently somewhat sensitive to the integration method and step-size
used, as well as to slight differences in the modeling and in planetary
masses and initial conditions.

The chaotic character of a dynamical system also manifests itself in
the power spectrum of its dynamical variables. For regular (quasiperi-
odic) motion, the power spectrum has discrete lines composed of linear
combinations of the fundamental frequencies of the system. However,
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for irregular (chaotic) motion, the power spectrum has a broadband
component. In their 845 Myr integration, Sussman & Wisdom (1988)
reported just the latter type of spectrum for Pluto’s h = e sin$, thus
providing corroboration for the chaotic character of their numerical
solution for Pluto’s orbit.

B. Stable chaos?

The determination of a positive Lyapunov exponent for a dynamical
system is usually a quantitative confirmation of chaos that is readily
apparent in the time evolution of its dynamical variables. However,
Pluto’s orbit has now been integrated for more than 500 times its Lya-
punov time, and yet no obvious chaotic behavior is to be found in the
evolution of its orbital elements.

Could Pluto’s motion be a case of “stable chaos”? An example of
“stable chaos” has been reported recently in a numerical study of the
long term evolution of asteroid 522 Helga (Milani & Nobili 1992). This
asteroid has a Lyapunov time of only 6900 years, yet its orbit remains
narrowly confined for more than 1000 times its Lyapunov timescale.
Other examples are described in Gladman (1993) where chaotic orbits
are found to be bounded for times as long as 105 Lyapunov times! Per-
haps this should not come as a complete surprise: a positive Lyapunov
exponent is a measure of a local instability only; it does not necessarily
imply large-scale chaotic behavior.

All the long integrations to date show no large-scale instability for
Pluto’s motion on billion-year timescales. In their 845 Myr integration,
Sussman & Wisdom (1988) reported that the divergence of two initially
nearby Plutos saturates at a distance of ∼45 AU. It was pointed out
by Milani et al. (1989) that this saturation should be expected if the
different Plutos remain in approximately the same orbits, but simply
diverge in phase while preserving the libration of φ with an amplitude
near 80◦. This point has been confirmed recently in Kinoshita & Nakai
(1995) who found by direct calculation that the deviations of mean
longitude and mutual distance of two initially nearby Plutos saturate
(after approximately 420 Myr) at 70◦ and 44 AU, respectively, while
the deviation of the resonance angle saturates at exactly twice its am-
plitude of libration. This suggests that the chaos detected by Sussman
& Wisdom does not affect the stability of the 3:2 resonance libration.
Milani et al. have argued that the origin of the chaos is one of the
weaker super-resonances and that the positive Lyapunov exponent in-
dicates that Pluto may be near a chaotic orbit associated with that
resonance. Kinoshita & Nakai (1995) and Levison & Stern (1995) have
integrated a variety of orbits similar to Pluto. Some of these did not
show libration of the first super-resonance and few showed libration of
the second one. Absence of these two resonances did not cause obvious
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chaotic instability in the orbital evolution. However, quite dramatic
changes were caused by increasing the amplitude of the 3:2 libration:
when the amplitude of φ was increased above ∼ 110◦, the ω libra-
tion was destroyed and the orbital elements showed chaotic variations.
These results indicate that the macroscopic stability of Pluto’s orbit is
determined primarily by the 3:2 resonance lock.

Thus it is reasonable to conclude that, if Pluto does indeed live in a
chaotic zone, that zone is exceedingly narrow. Whether it is connected
to a larger chaotic zone which would allow large scale chaotic changes
in its orbit [such as happens to asteroids near the 3:1 Kirkwood Gap
(Wisdom 1988)] remains an open question. In this context, we note
that Lecar et al. (1992) have found an empirical correlation between
the Lyapunov timescale and the timescale for macroscopic instability
for asteroidal orbits. A similar correlation was found for orbits in the
Kuiper Belt (Levison & Duncan 1993). If such a relation applies to
Pluto-like orbits, it suggests that Pluto’s orbit is macroscopically stable
for timescales of ∼ 1011 yr. However, it is prudent to be cautious in
this matter, for the physical causes of these correlations are not yet
understood, and it is not known whether Pluto belongs in the class of
objects where this relation applies.

V. ORIGIN OF PLUTO’S ORBIT

According to the accepted paradigm for the origin of the Solar system,
the planets accumulated in a flattened disk of dust and gas orbiting the
young Sun approximately 4.5 Byr ago. Internal dissipative processes
efficiently damped the random non-circular and out-of-plane motions
of the forming planets, and, as a result, the major planets move on
nearly circular and co-planar orbits. Mercury and Pluto are the striking
exceptions to this general rule, Pluto being the more extreme case.

The earliest speculation about the origin of Pluto was a suggestion
by Lyttleton (1936) that Pluto may have been a satellite of Neptune
which escaped into a heliocentric orbit due to a rare catastrophic event.
The main observations that led to this suggestion were that Pluto’s or-
bit crosses that of Neptune, and that Neptune itself possesses a large
satellite, Triton, similar in brightness to Pluto. Various means of ac-
complishing such escape have been considered in the literature (Lyttle-
ton 1936, Horedt 1974, Harrington & van Flandern 1979, Farinella et
al. 1979, Dormand & Woolfson 1980). This hypothesis has fallen out
of favor in recent years as a result of the recognition of the dynamical
constraints imposed by the existence of the 3:2 orbital resonance with
Neptune, and also the improved knowledge about the characteristics of
the Pluto-Charon system which strongly support the formation of both
these bodies in heliocentric orbit. The detailed arguments are reviewed
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in the chapter by Stern, McKinnon & Lunine.
If Pluto’s formation were similar to that of the other planets, it

would have formed in a near-circular, low-inclination orbit about the
Sun. Indeed, it may have been one of many small icy planets that
formed in the outer planetary region (Stern 1991). Its peculiar orbit
must then be explained as a result of post-formation dynamical pro-
cesses. Pluto’s long term dynamical stability is owed primarily to the
protection afforded by a sufficiently small libration amplitude about
the 3:2 Neptune resonance. Its emplacement in this very narrow sta-
ble region in phase space strongly suggests the role of some dissipative
mechanism in its early dynamical evolution. Here we summarize two
scenarios proposed recently that appear promising. In both these sce-
narios, Pluto formed in a low-e, low-i orbit beyond Neptune, and out-
side the 3:2 resonance; and both require a dissipative process to evolve
Pluto into its resonant Neptune-crossing orbit.

A. Resonance capture

One of us (Malhotra 1993a) has proposed that Pluto may have been
captured into the 3:2 Neptune resonance during the late stages of planet
formation, when Neptune’s orbit expanded as a result of angular mo-
mentum exchange with residual planetesimals. Resonant phase-locking
as a result of some slow dissipative process is a phenomenon well-known
in nature. In the Solar system, orbit-orbit resonances (as well as spin-
orbit resonances) are commonly found amongst the satellites of the
giant planets. Capture into an orbit-orbit resonance occurs when the
orbits of two bodies approach each other through some dissipative pro-
cess. The origin of orbital resonances amongst planetary satellites,
thought to be due to tidal friction, has been extensively studied in the
literature (see Peale 1986 and Malhotra 1994 for reviews).

The mechanism for the capture of Pluto into the exterior 3:2 Nep-
tune resonance proposed by Malhotra (1993a) is summarized as follows.
The giant planets’ gravitational perturbations cleared out their inter-
planetary regions by scattering the unaccreted mass of planetesimals.
Some fraction of this mass now resides in the Oort Cloud of comets
in a roughly isotropic distribution surrounding the planetary system
(e.g. Weissman 1990), but most has been lost from the planetary sys-
tem. A planetesimal scattered outward gains angular momentum, while
one scattered inward loses angular momentum at the expense of the
planets. The back reaction of planetesimal scattering on the planets
caused the planetary orbits to evolve. Consider the evolution of a plan-
etesimal swarm in the vicinity of Neptune. The mean specific angular
momentum and energy of the swarm is initially approximately equal to
that of Neptune. At first, a small fraction of the planetesimals would
be accreted, and of the remaining, approximately equal numbers would



HELIOCENTRIC ORBIT 19

be scattered inward as outward. To first order, these cause no net
change in Neptune’s orbit. However, the subsequent fate of the in-
ward and outward scattered planetesimals is not symmetrical. Most of
the inwardly scattered objects enter the zones of influence of the inner
Jovian planets (Uranus, Saturn and Jupiter). Of those scattered out-
ward, some are lifted into wide, Oort Cloud orbits while others return
to be reaccreted or rescattered; a fraction of the latter is again rescat-
tered inward where the inner Jovian planets control the dynamics. In
particular, Jupiter, due to its large mass, is very effective in causing
a systematic loss of planetesimal mass by ejection into Solar system
escape orbits. Therefore, as Jupiter preferentially removes the inward
scattered Neptune-zone planetesimals, the planetesimal population en-
countering Neptune at later times is increasingly biased towards objects
with specific angular momentum and energy larger than Neptune’s. En-
counters with this planetesimal population produce a negative drag on
Neptune which causes Neptune to gain orbital energy and angular mo-
mentum; as a result, its orbit expands. Jupiter is in effect the source of
this angular momentum and energy; however, owing to its much larger
mass, its orbit shrinks by only a small amount. This effect was first
found in numerical simulations by Fernandez & Ip (1984).

If the above phenomenon did occur in the late stages of planet
formation, it has profound consequences for the dynamical history of
Pluto (and, indeed, for any primordial small bodies in the outer Solar
system). If Pluto were initially in a nearly circular and co-planar orbit
beyond the orbit of Neptune, then as Neptune’s orbit expanded, its
exterior orbital resonances approached Pluto. In particular, if Pluto’s
initial orbital radius were such that the 3:2 resonance was the first
major Neptune resonance to sweep by, Pluto would be captured into
this resonance. Capture into resonance would be certain if Pluto’s
initial eccentricity were smaller than ∼ 0.03; the capture probability
would be smaller for higher initial eccentricities (10% for einitial ≈ 0.15).
[See Henrard & Lemaitre (1983) and Borderies & Goldreich (1984)
for the formulas for capture probability.] In the subsequent evolution,
as Neptune’s orbit continued to expand, the resonant perturbations
increased Pluto’s orbital eccentricity. Malhotra derives the following
relation between Pluto’s eccentricity and Neptune’s semimajor axis:

e2
final − e2

initial ≈
1
3

ln

(
aN,final

aN,initial

)
.

This equation shows that Pluto’s current eccentricity would have been
produced by its capture into the 3:2 resonance when Neptune’s semima-
jor axis was approximately 25 AU (∼5 AU less than its current value).
By implication, Pluto’s initial orbital radius was ∼33AU. This equation
also indicates a rather weak dependence of the final eccentricity on the
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initial e. We emphasize that in this scenario, Pluto is initially not in
a Neptune-crossing orbit. As the evolution within the resonance forces
the high eccentricity on Pluto, the libration also provides protection
against close approaches during the entire evolution.

The above analysis takes account of the perturbations of only Nep-
tune on Pluto, and explains the origin of Pluto’s 3:2 resonance lock with
Neptune and its high orbital eccentricity. This was confirmed in numer-
ical simulations presented by Malhotra (1993a). In those simulations,
the orbits of the outer planets were integrated self-consistently (except
that Pluto was treated as a massless ‘test particle’) with a model where
the giant planet orbits evolve adiabatically. In subsequent work, using
a larger number of ‘test Plutos’ and longer integration times, Malhotra
(1995a,b) has shown that the model with migrating giant planets which
sweeps the trans-Neptune Solar system with mean motion resonances is
able to account for all the major dynamical properties of Pluto’s orbit,
i.e. the observed eccentricity, the libration amplitude of φ, as well as
the high inclination and the argument-of-perihelion libration. However,
the inclination amplification to values as large as Pluto’s observed incli-
nation was found in only a small fraction, ∼< 10%, of the ‘test Plutos’.
[This explains why it was not found in the first results presented in
Malhotra (1993a).] The importance of the multi-planet perturbations
arises from the special circumstance that there exists a nodal secular
resonance in the neighborhood of the 3:2 Neptune resonance (Knezevic
et al. 1989). The amplification of the inclination is probably due this
secular resonance; the argument-of-perihelion libration is also due to
secular effects (see section III-B).

The formation of the Pluto-Charon binary pair is not addressed in
Malhotra’s model. However, a pre-existing binary formed in a low-e,
low-i nonresonant orbit would undergo the same resonance capture and
subsequent evolution outlined above.

B. Chaos + collisions

One scenario for the origin of Pluto’s orbit that has been around in a
general way is the Darwinian survival-of-the-fittest: namely, that Pluto
was one of a swarm of similar small bodies which were continuously
scattered by their mutual collisions into and out of the 3:2 resonance
with Neptune; Pluto simply happened to be the one that survived
to the present time in its protected orbit, whereas the other bodies
were removed by collisions with the giant planets. The existence of
Triton, Pluto and Charon lends support to the idea that there were
other similar ice-dwarf planets in the outer Solar system (Stern 1991).

Numerical calculations by Applegate et al. (1986), Kinoshita &
Nakai (1984), and Olson-Steel (1988) have indicated that, given the
current masses and orbits of the giant planets, most Pluto-like orbits
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near the 3:2 Neptune resonance exhibit large scale chaotic variations
over very short timescales, ∼ 105yr. [The origin of this behavior is
discussed in Malhotra (1996).] Recent numerical integrations by Hol-
man & Wisdom (1993), Levison & Duncan (1993) and Levison & Stern
(1995) have further explored the orbital dynamics near the 3:2 Neptune
resonance.

In these studies, it was found that test particles placed in initially
low-eccentricity, low-inclination orbits just outside the 3:2 Neptune res-
onance evolve rapidly (on ∼106yr timescales) into orbits with high ec-
centricity and inclination similar to that of Pluto. In particular, with
some fine-tuning of initial conditions (initial semimajor axis in the nar-
row range 39.48AU ≤ a ≤ 39.65AU), Levison & Stern find that a small
fraction — approximately 5% — of these orbits exhibit librations about
the 3:2 resonance, but with large, chaotically varying amplitude. The
dynamical lifetime of such orbits before a close encounter with Neptune
is typically short, O(107) yr, although in a few cases, the time to first
Neptune encounter can be several hundred million years.

Levison & Stern suggest that a “Pluto” on such a chaotic orbit
may be nudged into the stable 3:2 resonance libration region (with a
final libration amplitude of φ ∼< 90◦) by means of gravitational scat-
tering interactions or inelastic collisions with other primordial Kuiper
Belt objects. They considered two mechanisms for stabilizing the or-
bit: (i) damping the resonance libration amplitude to a stable value
by a slow diffusion of orbital elements due to gravitational interac-
tions of Pluto with a large number of small bodies, and (ii) a single
giant impact knocking Pluto (or a pre-existing Pluto-Charon binary)
into a stable orbit; they also considered the possibility of forming the
Pluto-Charon binary in such an orbit-stabilizing impact. From their
numerical modeling, they concluded that the first mechanism was not
efficient unless the Kuiper Belt were several orders of magnitude more
massive (during the orbit-stabilization epoch) than its estimated mass
at the present epoch. For the second, they found that a single giant
impact with a Charon-sized impactor can, in principle, stabilize Pluto’s
orbit and simultaneously produce a binary with properties similar to
the Pluto-Charon binary. Both scenarios were found to be able to ac-
count for the major dynamical properties of Pluto’s heliocentric orbit.
Because Levison & Stern’s scenarios require a series of probabilistic
events, their cumulative probability needs to be evaluated.

VI. SUMMARY AND FUTURE DIRECTIONS

The heliocentric orbit of the Pluto-Charon pair has been observed for
nearly one-third of its orbit period. Ephemerides of the pair (collec-
tively called “Pluto” in this chapter) fit the known observations well.
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However, one must bear in mind that the span of observation is still
much less than an orbit period, and there is a need for future positional
observations and orbit fits. A spacecraft mission to Pluto would need
ephemerides of high accuracy.

Pluto’s orbit is the most eccentric and inclined of the major planets
(Figure 1). At perihelion it ventures closer to the Sun than Neptune,
seemingly violating the well-spaced, hierarchical pattern of the other
planets that is generally associated with long-term orbital stability.
Investigation of the dynamical evolution of this configuration shows a
surprisingly complex behavior involving four resonances.
1. Every 494 years Pluto orbits the Sun twice while Neptune or-

bits three times. The resonant perturbations from Neptune cause
Pluto’s orbital period to librate about 248 yr and the resonance ar-
gument (cf. Eq. 1) to librate about 180◦ with an amplitude of 82◦.
The libration period is 19,912 yr. This orbital resonance lock pre-
vents Pluto from passing close to Neptune; when the two planets
have the same heliocentric longitude, Pluto is closer to its aphe-
lion than its perihelion (Figure 4). This resonance is so effective at
keeping the two planets apart that Pluto approaches Uranus more
closely than Neptune. The 3:2 resonance is a strong stabilizing
influence on Pluto’s orbit. Indeed, Pluto-like orbits just outside of
the resonance libration region display obvious chaotic behavior in
only a few million years.

2. Pluto’s argument of perihelion does not precess through 360◦; rather,
it librates about a value of 90◦. The libration period is 3.8 Myr and
its amplitude averages 21◦. Thus, Pluto’s perihelion and aphelion
never cross Neptune’s orbit plane. This also helps keep the two
planets apart.

3. The difference between Pluto and Neptune’s nodal longitudes cir-
culates every 3.8 Myr — the same period as that of the argument-
of-perihelion libration. The frequencies of these two angles are
locked in a 1:1 commensurability, and this resonance has a libra-
tion period of 34 Myr. The argument of perihelion librations, as
well as the eccentricity and inclination variations, are modulated
by this period.

4. The difference of the longitudes of perihelion of Neptune and Pluto
circulates in 1.267 Myr — one-third of the period of the argument
of perihelion libration, and also of the circulation period of the node
difference. This weak resonance has a 590 Myr libration period.

That Pluto’s orbit is chaotic is indicated by the positive Lyapunov
exponent determined in several different long numerical integrations.
However, the integrations which indicate the presence of chaos do not
show obvious erratic changes in the orbital elements that one might
expect with the short Lyapunov time of O(107)yr. Indeed, all the evi-
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dence suggests that the protection accorded Pluto by the 3:2 Neptune
resonance is robust over billion-year timescales. There remains a degree
of uncertainty in the magnitude of the Lyapunov timescale, as values
differing by factors of a few have been obtained in different numerical
integrations. The origin of the chaos remains unknown, as well. The
fourth resonance described above is one possible, but unproven, source
of the chaos; it does illustrate an important point: the magnitude of
the chaotic orbital perturbations may be small and bounded, or, if
unbounded, may require times much longer than the age of the Solar
system to threaten Pluto’s dynamical state. Nevertheless, a Lyapunov
timescale of O(107)yr implies a relatively short horizon of predictability
for its exact position and velocity.

Is it significant that small differences in modeling or integration
methods result in Lyapunov exponents differing by a factor of several?
If Pluto’s orbit is chaotic, what is the origin of the chaos, and how is
it manifested in its orbital element evolution? Because Pluto’s chaotic
motion may be associated with a narrow chaotic zone, it is desirable
to eliminate the uncertainties in past numerical integrations due to
(now known) errors in planetary masses and orbital initial conditions.
The Voyager flybys of the outer planets have provided a much im-
proved set of outer planet masses and continued analyses of positional
data sets has provided compatible ephemerides for the planetary ini-
tial conditions. Future numerical integrations should take advantage
of these improvements. The recent work by Kinoshita and Nakai is a
good beginning. Detailed studies of the dynamics of each of Pluto’s
resonances may provide clues to the underlying causes of the large-
Lyapunov-exponent-without-large-scale-chaotic-behavior.

What role do the various resonances play in the origin and con-
tinued existence of the Pluto-Charon system? Because some of the
resonances are protective in that they increase the minimum distance
between Pluto and Neptune, is it possible that a dynamical “survival
of the fittest” has left objects only in protected orbits? Or, instead, has
some dissipative process in Solar system history caused these (and per-
haps also other) bodies to be swept into the resonances? We have dis-
cussed two origin scenarios proposed recently (Malhotra 1993a,1995b;
Levison & Stern 1995). Both these scenarios suggest the formation of
Pluto in an initially non-resonant, nearly circular and co-planar orbit
in the outer reaches of the Solar system, beyond the orbit of Neptune.

In the scenario proposed by Malhotra (1993a), the adiabatic evolu-
tion of the giant planet orbits during the late stages of their formation
caused the trans-Neptune region to be swept by orbital resonances;
Pluto was captured into the 3:2 orbital resonance with Neptune and its
eccentricity was pumped up to a Neptune-crossing value during that
evolution. Secular resonant effects amplified its inclination, while other
non-resonant secular effects account for the argument-of-perihelion li-
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bration. The magnitude of the radial migration of Neptune (as well
as of the other giant planets) implied in this theory has other theoret-
ical and observational consequences. Malhotra (1995b) has examined
in detail the efficiency of resonance capture and its implications for
the evolution of other small bodies in the trans-Neptune region. A
major consequence of her model for the origin of Pluto’s orbit is that
the distribution of small objects in the Kuiper Belt would be highly
non-uniform, with high concentrations of objects trapped in the major
orbital resonances with Neptune. The 3:2 and the 2:1 Neptune reso-
nances (located at a ≈ 39.4 AU and a ≈ 47.8 AU) are the most efficient
at sweeping up mass, but other resonances, notably the 4:3 and the 5:3
(located at 36.5 AU and 42.3 AU, respectively) also have significant
capture probabilities. Objects swept up in these resonances during the
radial migration of the giant planets would have had their orbital ec-
centricities pumped up to values typically in the range 0.1–0.3. Thus,
this scenario is falsifiable by means of a census of orbital distribution
of objects in the Kuiper Belt. The discovery of several small objects
in recent and ongoing observational surveys of the outer Solar system
with orbits that are consistent with the predictions of this model may
lend support to this model of the origin of Pluto’s orbit (Jewitt & Luu
1995; Cochran et al. 1995, Marsden 1995). A conclusive evaluation
must await a robust determination of orbits of a sufficiently large and
unbiased sample of the Kuiper Belt population.

The second scenario that we have discussed for the origin of Pluto’s
orbit is based on the observation that given the current configuration
of the planetary system, there is a narrow zone just outside the exte-
rior 3:2 Neptune resonance where circular, zero-inclination orbits are
unstable, and the perturbations of the planets amplify the eccentricity
and inclination to values similar to that of Pluto’s orbit (Holman &
Wisdom 1993, Levison & Duncan 1993). However, objects in such or-
bits remain chaotic and eventually suffer a destructive close encounter
with Neptune on timescales ranging from 107 to 109 yr. Levison &
Stern (1995) propose that gravitational scattering and/or inelastic col-
lisions between the proto-Pluto and other Kuiper Belt objects could
have knocked Pluto from an initially chaotic orbit in the vicinity of the
3:2 Neptune resonance into the stable libration region, possibly simul-
taneously forming the Pluto-Charon binary. Their numerical modeling
also shows that the major dynamical properties of Pluto’s heliocentric
orbit as well as the Pluto-Charon binary can be accounted for in this
manner.

Much work remains to be done to establish the details of each of
these models. With regard to Malhotra’s model, improved calcula-
tions of the orbital evolution of the giant planets during the late stages
of their formation are called for. This is important both for establish-
ing the fundamental assumption in her model of the outward resonance
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sweeping in the trans-Neptune region, and also for making quantitative
comparisons with forthcoming observational data on the mass distribu-
tion in the Kuiper Belt. With regard to Levison & Stern’s model, the
plausibility of their scenario remains to be evaluated considering the
following assumptions of their model: (i) Pluto’s initial low-e, low-i or-
bit is required to be in a very narrow range of a; (ii) their model relies
upon the current configuration of the giant planets; is the e, i excitation
mechanism sufficiently insensitive to the evolution of the outer planet
masses and orbits during their formation? and (iii) the probability of a
Charon-forming impact during the period of time after Pluto becomes
Neptune-crossing and before it has a close encounter with Neptune
needs to be evaluated.

Finally, we should note that mean motion resonance locks are vul-
nerable to collisional disruption, as discussed in some detail in Malhotra
(1993b). The strength of the Neptune-Pluto 3:2 resonance can there-
fore yield estimates of impactor masses in the outer Solar system. The
current 3:2 Neptune-Pluto resonance lock has a high probability of be-
ing destroyed by an impact on Neptune of mass ∼ 1027 g (Malhotra
1993a), and by an impact on Pluto-Charon of mass similar to Charon’s
mass [see Hahn & Ward (1995) for an analytic derivation, Levison &
Stern (1995) for an estimate from numerical simulations]. The former
provides an upper limit for Neptune impactors post-dating the forma-
tion of the Pluto-Neptune resonance, while the latter shows that the
formation of the Pluto-Charon binary by a giant impact post-dating
the resonance capture is unlikely as it has a high probability of dis-
lodging these bodies from the stable libration region. Therefore, it is
likely that Pluto and Charon were transported together (as a binary
planet) to their current orbit.

The fascinating dynamical complexity of Pluto’s orbital evolution
could not have been guessed at its first sighting as a moving point of
light in 1930. A large number of questions invites further study of
the Pluto-Charon pair. The orbit of this pair of bodies at the edge of
the planetary system may hold unanticipated clues to the dynamical
evolution of the Solar system.
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Figure 1. The orbits of the outer planets in a heliocentric reference frame:
(a) projection in the plane of the ecliptic; (b) projection in cylindrical polar
coordinates (r is the distance from the Sun projected in the ecliptic, and
z is the distance above the ecliptic).
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Figure 2. The variation of Pluto’s orbital elements over 40,000 years: the
semimajor axis, eccentricity, inclination are shown in the upper three pan-
els. The bottom panel shows the libration of the resonance angle with a
period of about 20,000 years. The 20,000 year periodic variations are evi-
dent in the semimajor axis and eccentricity, but not the inclination. The
latter is only very weakly affected by Pluto’s 3:2 mean motion resonance
with Neptune.
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Figure 3. The variation of Pluto’s orbital elements over 8 million years:
the semimajor axis, eccentricity, inclination are shown in the upper three
panels. The bottom panel shows the libration of the argument-of-perihelion
with a period of about 3.8 million years. The 3.8 million year periodic
variations are evident in the eccentricity and the inclination, but not the
semimajor axis. The latter is almost unaffected because the argument-of-
perihelion libration involves only secular perturbations.
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Figure 4. The orbits
of the outer planets for 40,000 years in a reference frame co-rotating with
the mean motion of Neptune. In this reference frame two orbits of Pluto
trace out a complete loop in ∼500 yr. This figure visualizes the effects of
the most important resonance of Pluto’s motion: the 3:2 resonance libra-
tion which causes Pluto’s heliocentric longitude conjunctions with Neptune
to librate about aphelion with a period of about 20,000 yr; its perihelion
librates 90◦ away from Neptune with that same period.
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Figure 5. The distance
between Neptune and Pluto: their closest approach distance (near aphe-
lion) varies between ∼17 AU and ∼22 AU. (The synodic period of Neptune
and Pluto is ∼500 yr.)
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Figure 6. The distance
between Uranus and Pluto: their closest approach distance varies between
∼12 AU and ∼26 AU. (The synodic period of Uranus and Pluto is ∼130
yr.)
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Figure 7. The
resonance argument, φ = 3λ− 2λN −$ (in degrees) as a function of time,
in years, from the present. (Reproduced, with permission, from Milani et
al. 1989).
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Figure 8. Pluto’s ar-
gument of perihelion, ω, for 214 Myr. The abscissa is time, in days. The
3.8 Myr libration of ω is modulated with a 34 Myr period. (Reproduced,
with permission, from Applegate et al. 1986).
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Figure 9. A (pseudo)surface-
of-section in the circular planar restricted 3-body model for the Neptune-
Pluto 3:2 resonance. The dynamical variables plotted here are the reso-
nance angle, φ, and the semimajor axis a (the latter in units of the Sun-
Neptune distance). The stable libration region is surrounded by a large
chaotic zone. (Adapted from Malhotra 1996.)
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from quasiperiodic behavior by the way in which nearby trajectories 

diverge (6, 7). Nearby quasiperiodic trajectories diverge linearly 
with time, on average, whereas nearby chaotic trajectories diverge 

exponentially with time. Quasiperiodic motion can be reduced to 

motion on a multidimensional torus; the frequency spectrum of 

quasiperiodic motion has as many independent frequencies as 

degrees of freedom. The frequency spectrum of chaotic motion is 

more complicated, usually appearing to have a broad-band compo- 
nent. 

The Lyapunov exponents measure the average rates of exponen- 
tial divergence of nearby orbits. The Lyapunov exponents are limits 

for large time of the quantity y = ln(d/do)/(t - to), where d is the 

distance in phase space between the trajectory and an infinitesimally 

nearby test trajectory, and t is the time. For any particular trajectory 
of an n-dimensional system there can be n distinct Lyapunov 

exponents, depending on the phase-space direction from the refer- 

ence trajectory to the test trajectory. In Hamiltonian systems the 

Lyapunov exponents are paired; for each non-negative exponent 
there is a non-positive exponent with equal magnitude. Thus an m- 

degree-of-freedom Hamiltonian system can have at most m positive 

exponents. For chaotic trajectories the largest Lyapunov exponent is 

positive; for quasiperiodic trajectories all of the Lyapunov expo- 
nents are zero. 

Lyapunov exponents can be estimated from the time evolution of 

the phase-space distance between a reference trajectory and nearby 
test trajectories (7, 8). The most straightforward approach is to 

simply follow the trajectories of a small cloud of particles started 

with nearly the same initial conditions. With a sufficiently long 

integration we can determine if the distances between the particles 
in the cloud diverge exponentially or linearly. If the divergence is 

exponential, then for each pair of particles in the cloud we obtain an 

estimate of the largest Lyapunov exponent. With this method the 

trajectories eventually diverge so much that they no longer sample 
the same neighborhood of the phase space. We could fix this by 

periodically rescaling the cloud to be near the reference trajectory, 
but we can even more directly study the behavior of trajectories in 

the neighborhood of a reference trajectory by integrating the 

variational equations along with the reference trajectory. In particu- 

lar, let y' = f(y) be an autonomous system of first-order ordinary 
differential equations and y(t) be the reference trajectory. We define 

a phase-space variational trajectory y + by and note that by satisfies 

a linear system of first-order ordinary differential equations with 

coefficients that depend on y(t), by' = J-8y, where the elements of 

the Jacobian matrix are Jj = af/lyJ. 
Our numerical experiment. For many years the longest direct 

integration of the outer planets was the I-million-year integration of 

Cohen, Hubbard, and Oesterwinter (9). Recently several longer 

integrations of the outer planets have been performed (5, 10, 11). 
The longest was our set of 200-million-year integrations. Our new 

845-million-year integration is significantly longer and more accu- 

rate than all previously reported long-term integrations. 
In our new integration of the motion of the outer planets the 

masses and initial conditions are the same as those used in our 200- 

million-year integrations of the outer planets. The reference frame is 

the invariable frame of Cohen, Hubbard, and Oesterwinter. The 

planet Pluto is taken to be a zero-mass test particle. We continue to 

neglect the effects of the inner four planets, the mass lost by the Sun 

as a result of electromagnetic radiation and solar wind, and general 

relativity. The most serious limitation of our integration is our 

ignorance of the true masses and initial conditions. Nevertheless, we 

believe that 6ur model is sufficiently representative of the actual solar 

system that its study sheds light on the question of stability of the 

solar system. To draw more rigorous conclusions, we must deter- 

mine the sensitivity of our conclusions to the uncertainties in masses 
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and initial conditions, and to unmodeled effects. 

Our earlier integrations were limited to 100 million years forward 

and backward in time because of the accumulation of error, which 

was most seriously manifested in an accumulated longitude error of 

Jupiter of order 50?. In our new integrations we continue to use the 

12th-order St6rmer predictor (12), but a judicious choice of step 
size has reduced the numerical errors by several orders of magnitude. 
In all of our integrations the error in energy of the system varies 

nearly linearly with time. In the regime where neither roundoff nor 

A n\ 

-5.0 - 

-6.0 - 

r--" 

I 

V 

0 

>1 

cl- 

0..4 

IZ)b 
0 

-7.0 

r.o 

4.0 5.0 6.0 7.0 8.0 9.0 

loglo t [years] 

Fig. 2. The conventional representation of the Lyapunov exponent calcula- 
tion, the logarithm of y versus the logarithm of time. Convergence to a 
positive exponent is indicated by a leveling off; for regular trajectories this 

plot approaches a line with slope minus one. 
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Fig. 3. Common logarithm of the distance between several pairs of Plutos, in 
AU, versus the common logarithm of the time, in years. The initial segment 
of the graph closely fits a 3/2 power law (dashed line). The solid line is an 

exponential chosen to fit the long-time divergence of Plutos. The exponential 
growth takes over when its slope exceeds the slope of the power law. 
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Figure 10. The finite-
time Lyapunov exponent of Pluto, γ, as a function of time. In this log-log
plot, convergence to a positive Lyapunov exponent (for a chaotic trajec-
tory) is indicated by a leveling off; for a regular trajectory, this trace would
approach a straight line with slope −1. (Reproduced, with permission,
from Sussman & Wisdom 1988).


