Planet migration in the Solar system

Renu Malhotra
Lunar and Planetary Laboratory
The University of Arizona
The solar system has not always looked like it does now (@ age of 4.567 Gy)

@ 4.5 Gyr ago: orbits more compact + a lot more debris (asteroids, comets)
@ 3.9 Gyr ago: debris cleared up (mostly), planets settled into their present orbits
A little bit about me …

I am interested in the “architecture” of planetary systems
- how planetary masses and orbits are arranged
- how they form and change over time

Renu Malhotra

Louise Foucar Marshall Science Research Professor
Regents Professor of Planetary Sciences

The University of Arizona

Lunar & Planetary Laboratory

Tucson
A little bit about me …

Renu Malhotra

Louise Foucar Marshall Science Research Professor
Regents Professor of Planetary Sciences
THE UNIVERSITY OF ARIZONA

I am interested in the “architecture” of planetary systems
- how planetary masses and orbits are arranged
- how they form and change over time

physics + astronomy + mathematics
my own peregrinations…
my own peregrinations…

New Delhi 1961-1968

Hyderabad 1968-1978

New Delhi 1978-1983
St. Ann’s School, Secunderabad, India

Indian Institute of Technology, Delhi

all-girls school

~3%
St. Ann’s School, Secunderabad, India

all-girls school

~3%
Undergraduate: Physics

Graduate studies: Physics

Dynamical systems - chaos theory

Planetary dynamics/planetary science
factors that have been important in my life and career

- curiosity
- ignoring distractions
- perseverance
- perfectionism

- broad-minded parents
- teachers & mentors
- partner
- USA ... country & society

- adversity
- & serendipity
On to planets...
Ancient concept of cosmos

eternal, unchanging

planets

Moon

Sun

Earth
Modern concept of the cosmos

Earth is a planet in the solar system … in the Milky Way Galaxy … in the Local Cluster of galaxies … in the Universe
Modern concept of the cosmos

Earth is a planet in the solar system …
in the Milky Way Galaxy … in the Local Cluster of galaxies … in the Universe

evolves on many timescales
Four or Five distinct neighborhoods in the Solar system
also some stragglers in-between (NEOs, Centaurs)
Four or Five distinct neighborhoods in the Solar system
also some stragglers in-between (NEOs, Centaurs)
circa ~1990 … Nine planets in the solar system
Pluto is eccentric
its orbital path overlaps that of Neptune
but it is in no danger of colliding with Neptune
Pluto is eccentric
its orbital path overlaps that of Neptune
but it is in no danger of colliding with Neptune
Pluto is eccentric
its orbital path overlaps that of Neptune
but it is in no danger of colliding with Neptune

20,000 year libration
Neptune’s migration and Resonance sweeping

Prediction: pile-ups of KBOs in resonances
Giant planet migration fueled by leftover planetesimals

Solar system @ ~4 Ga

Solar system ~today

Ejected

Scattered

Oort Cloud

Cleared

Surviving debris
Planetesimal clearing → back-reaction on the planets
Planetesimal clearing \Rightarrow back-reaction on the planets
Planetary clearing → back-reaction on the planets

Jupiter...Neptune + trillions of planetesimals → Jupiter migrates inward, Neptune migrates outward
The origin of Pluto’s peculiar orbit

Renu Malhotra

\[e_{P,\text{final}}^2 - e_{P,\text{initial}}^2 \approx \frac{1}{j+1} \ln \left(\frac{a_{N,\text{final}}}{a_{N,\text{initial}}} \right) \]

Pluto’s resonance and eccentricity

Neptune’s migration

\[e_P = 0.25 \Rightarrow \Delta a_N \approx 5 \text{ au} \]

Confirmed with computer simulations
Kuiper Belt observations
Kuiper Belt observations

resonances, eccentricities, inclinations

\[\Rightarrow \text{Neptune migrated out} \gtrsim 10\text{AU}\]
Other observational tests?

Asteroid belt

Impact craters on planetary surfaces
Asteroid belt - Kirkwood gaps

Asteroid Main-Belt Distribution
Kirkwood Gaps

image: wikipedia
Asteroid belt - Kirkwood gaps

Kirkwood related the locations of the gaps to mean motion resonances with Jupiter.

Discovered by Daniel Kirkwood in 1857, when less than 100 asteroids were known.
Asteroid belt - Kirkwood gaps

Kirkwood related the locations of the gaps to mean motion resonances with Jupiter.

The gaps sizes are best explained if Jupiter migrated inward from a slightly larger orbit.

Discovered by Daniel Kirkwood in 1857, when less than 100 asteroids were known.

Clues in the impact crater record

- Two different populations of craters

Mercury

Moon

Venus

Mars
Clues in the impact crater record

- Two different populations of craters

Mercury

Moon

Mars

Venus
Summary

• The solar system has not always looked like it does now (@ age of 4.567 Gy)
 @ 4.5 Gyr ago: orbits more compact + a lot more debris (asteroids, comets)
 @ ~4 Gyr ago: debris cleared up (mostly), planets settled into their present orbits

• That early dynamic period had major consequences
 ✦ planetary re-arrangements ⇒ (more) stable orbits
 ✦ heavy meteoroidal bombardment
 ✦ very little asteroidal/cometary debris left, hence low bombardment rate on Earth

• Details under active study and debate