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a b s t r a c t

We present the scientific case to build a multiple-wavelength, active, near-infrared (NIR)
instrument to measure the reflected intensity and polarization characteristics of back-
scattered radiation from planetary surfaces and atmospheres. We focus on the ability of
such an instrument to enhance, potentially revolutionize, our understanding of climate,
volatiles and astrobiological potential of modern-day Mars.

Such an instrument will address the following three major science themes, which we
address in this paper:

Science Theme 1. Surface. This would include global, night and day mapping of H2O
and CO2 surface ice properties.

Science Theme 2. Ice Clouds. This would including unambiguous discrimination and
seasonal mapping of CO2 and H2O ice clouds.

Science Theme 3. Dust Aerosols. This theme would include multiwavelength
polarization measurements to infer dust grain shapes and size distributions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Our present understanding of the sublimation of surface
H2O and CO2 ices and related atmospheric changes on Mars
is the result of recent polewide and seasonal studies of
springtime recession using the CRISM [1], Mars Climate
Sounder [2] and MARCI [3]instruments on MRO, the OMEGA
instrument on Mars Express [4,5], the THEMIS instrument on
Mars Odyssey [6] and the TES instrument on Mars Global

Surveyor [7]. These investigations have steadily advanced our
understanding of major polar processes. However, the con-
firmed observations of the spatially localized springtime
recession phenomena such as geysers (gas/dust jets) [8]
and asymmetric retraction of the seasonal cap [9] lead us
to ask the key scientific question – what role does spatially
localized and temporally intermittent deposition of ices and
dust during fall and winter play in the annual CO2 and H2O
cycles which dominate the climate of modern-day Mars?

We discuss herein an instrument concept called “Atmo-
spheric/Surface Polarization Experiment at Nighttime” (ASPEN)
[10] which is designed in response to this first order scientific
question regarding Martian climate.
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The ASPEN instrument will be a multi-wavelength, altitude-
resolved, active near-infrared (NIR) instrument to measure the
reflected intensity and polarization characteristics of backscat-
tered radiation from planetary surfaces and atmospheres.
The proposed instrument is ideally suited for a mission to
Mars to investigate the nature and seasonal abundance of
atmospheric dust and icy volatiles, provide insight into surface
and cloud/aerosol grain sizes and shapes, evaluate ice and dust
particle microphysics and also provide atmospheric column
content constituent chemistry during multiple variable over-
flight local times throughout polar night and day.

Previous instruments have given glimpses of cloud and
surface ice activity on Mars, but no previous Martian
orbital instrument has been able to simultaneously
address the following science questions:

a) Detect and characterize clouds and condensates up to
100 km above the Martian surface during night and
day [11].

b) Discriminate between H2O and CO2 ice on the surface
and aerosols in the atmosphere.

c) Map the global height of the Martian Planetary Bound-
ary Layer [12] as a function of season [13].

d) Map cloud structure using lidar backscatter and
depolarization.

e) Map large-grained (up to 30 cm) CO2 slab ice during
the austral polar night [1,14].

f) Determine whether the H2O ice signature in the
southern polar trough system is due to cloud [15]or
surface ice [16].

g) Monitor ‘cold spot’ activity during the polar night and
determine definitively how these enigmatic features
are related to CO2 clouds, precipitation or surface ice
[17,18] or possible low altitude temperature inversions
and CO2 vapor depletion [19].

h) Monitor night and day gas/dust jet (geyser) activity
within the ‘Cryptic Region’ in southern late winter and
early spring and determine what amount of solar
energy is required for them to be active [8,20].

i) Uniquely identify cloud types and platelet/grain orienta-
tion, in order to confirm the presence and structure of
convective CO2 cloud towers, a potentially critical part of
the polar night dynamics and energy partitioning [21].

j) Provide atmospheric column dust optical depths
whenever the instrument is in operation [22,23].

k) Monitor the spring and summertime retreating polar
caps for signs of entrained “sublimation flows” caused
by subliming CO2 ice.

l) Map the occurrence of unusually thin H2O daytime
summer polar hoods [24,25].

m) Address questions of spatial extent (locality and ‘deep
transport’) of Martian cloud structure, which is antici-
pated to be on the order of 1 kmwidth and is crucial to
understanding differences between terrestrial and
Martian mesospheric atmospheric dynamics [26,27].

n) Carry out an active circular polarization survey of the
selected parts of the surface (e.g. chloride bearing
regions [28]) and the ice caps of Mars to determine
whether homochiral signatures (a biomarker for ter-
restrial microbes) exist on the surface [29].

2. Instrument concept and background

The Mars Science community has recognized the need for
an ASPEN-type instrument. The need for active scanning laser
sensors that operate over a range of frequencies was
acknowledged in the recent Solar System Exploration Road-
map [30] (p. 108). In addition, the Second 2013 Mars Science
Orbiter Science Analysis Group (MSO SAG) report stated that
a “multibeam lidar” similar to the LOLA instrument on Lunar
Reconnaissance Orbiter and inheriting many aspects from the
CALIPSO lidar would “resolve optically dense atmospheric
phenomena” and “significantly constrain seasonal mass bud-
gets”. In essence, it was thought to be an ideal instrument for
a “2013 MSO mission” [31]. A particular emphasis of this
MSO SAG report was the need for focussed Polar investiga-
tions. In fact, the SAG designated a suite of specific instru-
ments for “P (Polar) type” observations.

A lidar instrument such as ASPEN was also recom-
mended in the report on the 3rd International Workshop
on Mars Polar Energy Balance and CO2 Cycle [32] and has
been emphasized further as a future instrument priority in
a white paper submitted to the Planetary Sciences Decadal
Survey entitled ‘Mars Polar Science for the Next Decade’.
Following on after the Mars 2020 rover mission, our
targeted mission time frame would be the 2022 launch
opportunity and beyond, perhaps as the MICADO Discov-
ery class mission [33].

The scientific impact of such an instrument would be
substantial – the Martian climate and its connection to the
dynamical environment of the polar nights are unique and
poorly understood. Only an active system such as ASPEN
can adequately investigate the surface and atmospheric
characteristics of the Martian polar night.

Fig. 1 shows an artistic rendering of the ASPEN lidar
system deployed in Mars orbit. The eventual spaceflight
instrument will be suited for a mission to Mars to
investigate the nature and seasonal abundance of icy
volatiles, provide insight into surface and cloud grain sizes

Fig. 1. The ASPEN instrument in operation at Mars, probing the north
polar hood.
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and geometries, evaluate cloud/aerosol particle microphy-
sics and potentially also provide atmospheric column
constituent chemistry during polar night and day.

Surface spot size and resolution. Preliminary laser power
calculations of common measurement scenarios for the
diode pumped fiber laser ASPEN instrument estimate the
surface spot size at "25 m on the surface and a horizontal
resolution of "275 m. This is similar to the resolution
achieved by the Nd-YAG CALIPSO lidar (Table 1).

Multiwavelength. In order to take advantage of the
tremendous research and development that has gone into
lasers and fiber optic components that operate in the near-
IR by the telecommunications industry in recent years, the
instrument will operate at wavelengths between 1.43 and
1.67 μm. As we discuss in more detail below, these
wavelengths are ideally suited to discriminate CO2 and
H2O ices and vapor using the differential absorption lidar
(DIAL) technique originally developed for terrestrial
remote sensing [34,35].

These particular characteristics of ASPEN are key to
generating the type of measurements that will resolve
fundamental outstanding questions regarding the Martian
climate.

2.1. Previous lidar mission – MOLA

The highly successful Mars Orbiting Laser Altimeter
(MOLA) instrument on Mars Global Surveyor measured
clouds (see Fig. 2) and the height of the seasonal CO2

surface ice accumulations [36–38]. However, its use of a
single wavelength (1.064 μm) prevents discrimination
between H2O and CO2 clouds using the MOLA dataset,
although in combination with TES temperature measure-
ments, causal evidence has been found for polar CO2 ice
clouds [39]. In addition, MOLA had no ability to determine
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Fig. 2. MOLA lidar profile over edge of the north polar cap showing
“nonground triggers” in colored dots above the solid black line showing
the ground elevation. The dotted line is the terminator. Ls¼164 is
northern fall and the north polar hood is responsible for the cloud
returns. From [40]. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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particle sizes or shapes, nor measure the H2O or CO2 vapor
abundances (Table 1).

The MOLA instrument did demonstrate the ability to
detect optically thin Martian dust devils [40]. Conse-
quently, one can have confidence that ASPEN will be
capable of monitoring dust loading and activity, including
that associated with the eruption of ‘geysers’ in the south
polar ‘Cryptic’ Region [8] – because the ASPEN detectors
are designed not to saturate over the relatively high albedo
Martian ice caps.

2.2. Previous lidar mission – Phoenix

The Phoenix spacecraft landed in the Vastitas Borealis
region near the northern pole of Mars (at 68.21 N) in May
2008 and operated for 5 months or 152 Martian days (one
summer and fall period) [41]. The Phoenix metrology
station included a vertical pointing Nd:YAG lidar operating
at 1.064 and 0.532 μm. The lidar system successfully
detected aerosol structures consistent with Martian cirrus
clouds (see Fig. 3) and in particular the ‘virga’ or “Mare’s
Tails” (ice particles falling from their formation site in the
main cloud deck) as they passed over the lander during
the local night [42]. Phoenix lidar data has also been used
to measure the height of the Planetary Boundary Layer
(around 4 km) and infer dust grain sizes (using ratios of
the two channels) around 1.2–1.4 μm [43]. Having no
polarization capability, the Phoenix lidar could not directly
determine grain shapes. We consider the Phoenix lidar to
be a useful pathfinder for more ambitious lidar systems
such as ASPEN.

2.3. Previous lidar mission – CALIPSO

The CALIOP laser onboard the Cloud Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO) space-
craft was launched in April 2006 and is still in operation.
With an orbit "700 km, it is part of the ‘A-Train’ of Earth
observing satellites. The CALIOP laser operates at 1.064 and
0.532 μm, measuring linear polarization in the latter band.
The instrument was designed and tested at Ball Aerospace
and is operated jointly by NASA and CNES [44].

The surface footprint of the CALIOP is "100 m and the
vertical resolution is 30–60 m. Fig. 4 shows an example of

a CALIPSO observation of soot from Arctic wildfires drifting
over Greenland [45]. The sensitivity to the aerosols asso-
ciated with the fires provides a clear demonstration of
lidar utility for monitoring/characterizing dust and cloud
activity across multiple scales, as well as for studies of low
lying fogs and sublimation flow events near the Martian
surface. CALIPSO has also been used to monitor the height
of the terrestrial planetary boundary layer [13], a useful
precursor experiment for ASPEN at Mars.

Although CALIOP does not exhibit the same wavelength
flexibility and polarimetric capability (i.e. does not mea-
sure the full returned Stokes vector) of the ASPEN instru-
ment, its enhanced abilities beyond the MOLA and Phoenix
lidar provide further motivation for the ASPEN concept of
an orbital lidar around Mars.

3. Scientific approach to achieving planned objectives

We now discuss the scientific approach to achieve the
Science Objectives of the ASPEN instrument. We break the
discussion below down by science theme, where each
theme embodies at least four key common capabilities:

Nadir soundings: In common with the MOLA and
Phoenix lidars, the ASPEN instrument naturally resolves
the return pulse from backscattering target materials,
including atmospheric constituents, gas and aerosols,
clouds and multiple cloud decks and low lying fogs, in
addition to the surface return.

Composition: The multi-wavelength nature of the
instrument allows discrimination of the three major con-
stituents of the Martian volatile cycles – CO2 and H2O ice
and gas, and dust.

Grain size and distribution: The Müller matrix polariza-
tion capability of the lidar allows determination of the
scattered grain size and place limits on the size distri-
bution.

Seasonal changes and dynamics: The orbital nature of
the ASPEN instrument and mission profile allows us to
concentrate on polar observations in order to address key
scientific questions that are inaccessible to other instru-
ments. Maps of the changes over the mission lifetime will
be key to increasing our understanding and improving our
interpretations of the Martian volatile cycles.

To outline the science case, we discuss below a “mini-
mal laboratory” ASPEN instrument that could be developed
to reduce engineering risks. The “minimal” nature is

Fig. 3. Phoenix lidar vertical scan showing fall streaks in northern
Martian summer as they pass 4 km high over the lander. From [42].

Fig. 4. CALIPSO satellite vertical scan over Greenland ice sheet showing
aerosol soot due to wildfires. From [45].
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captured primarily in the cost savings obtained by the use
of a small number of laser wavelengths.

3.1. Science theme one – surface

3.1.1. Detection of H2O ice and CO2 ice and discrimination
from vapor

In the 1.4–1.7 μm region there are several H2O and CO2

ice and gas absorption bands (Fig. 5). Table 2 identifies
particularly relevant bands for. Not all of these absorption
bands need to be covered in a “minimal laboratory”
instrument, but they may be used by an eventual space-
borne instrument.

When measured by a coarse spectrometer [46], CO2 ice
and vapor lines overlap and therefore can be difficult to
separate [47]. However, as seen in Fig. 5, when illuminated
with a narrow band laser of less than 1 nm spectral width,
these bands overlap but are separable, particularly because
of the nature of narrow CO2 ice bands. To construct Fig. 5,
we used gas band data from the HITRAN database [48] and
H2O ice optical constants appropriate for 145 K [49] and
CO2 ice optical constants [50] to model the spectra of H2O
and CO2 ice with grain sizes of 10 and 1000 μm and 40%
porosity [9,51], using the albedo model of Shkuratov [52].

3.1.2. Simulations of the Martian polar surfaces
Several aspects of the Martian icy polar regions are not

well understood. Testing and certifying the ASPEN instru-
ment for flight will require preparation of an analog for the
Martian CO2 seasonal cap. This will require the marriage of
the minimal laboratory instrument with a Martian test

chamber. The chamber would contain analog CO2 ice slabs
[53] and H2O and CO2 ice particles to Martian snowpack
under a 6–10 mbar CO2 atmosphere. The amount of dust
mixed into the ice surface is not well constrained [54].
During the course of testing this type of instrument, one
would anticipate using a range of suspended and surface
dust compositions, grain shapes and size distributions to
simulate realistic dusty Martian snowpacks and dust-laden
atmospheres.

3.1.3. Ice identification using multiple wavelengths
To differentiate ice composition, we will use a ratio of

the backscattered reflectance at the absorption band
center to that outside the relevant absorption feature.
The minimal instrument will use only 3 lasers; therefore,
it will only be able to simultaneously detect three phases
unambiguously. A ratio of 1.5773/1.5549 μm will give CO2

ice, 1.5696/1.5549 μm will give CO2 gas and 1.5549/
1.5773 μm will give the slope of the H2O ice absorption
feature, allowing H2O ice abundance estimates. More lines
would be added in the 1.4–1.7 μm region in the eventual
orbital instrument to provide simultaneous sensitivity to
H2O and CO2 gas and ice phases (Table 2).

3.1.4. Surface pressure maps and partial pressure
of H2O vapor

Using the multiple wavelength DIAL technique dis-
cussed above, the ASPEN instrument will be able to
measure the atmospheric pressure using the CO2 gas band,
and partial pressure of H2O vapor. It will be able to
discriminate these from surface ices. Given that CO2

comprises more than 95% of the Martian atmosphere,
ASPEN can essentially provide the atmospheric surface
pressure (generally to 1%). Thus, ASPEN will be able to
produce global surface total pressure and water vapor
partial pressure maps for the entire mission, for each
multiple wavelength nadir sounding measurement.

These seasonal maps of surface pressure will be a
unique dataset that will be of great value for the Mars
climate modeling community, and can be used to generate
wind maps, assess atmospheric heat transfer and address
questions of current global energy dynamics, including
katabatic winds over the polar regions [55], on cap CO2

depositional winds [56–58] (the “Houben effect”), transfer
of H2O between caps and regolith [59] and countless other
Martian atmospheric phenomena.

3.2. Science theme two – ice clouds

3.2.1. CO2 ice clouds and CO2 ice snowfall
CO2 ice clouds on Mars were first suggested by Gierasch

and Goody [60] and were thought to have been observed by
the Mariner 6 and 7 infrared spectrometer [61] although
that observation has been disputed [62]. Low brightness
temperatures measured by Viking were attributed to CO2

clouds or perhaps snowfall by Forget [63]. Montmessin
et al. [64] reported detection of CO2 ice clouds with grain
sizes of less than 100 nm at 100 km above the Martian
surface using PFS/SPICAM in an occultation study. Subse-
quently, the CO2 cloud formation process has been modeled
accounting for homogenous nucleation conditions in the

Fig. 5. Model reflectance spectra of CO2 vapor (red, normalized to (1) CO2

ice (blue) and H2O ice (gray). Both ices have been normalized to 1 at
1 μm). Black vertical lines show three laser lines to be used for the
“minimal” ASPEN instrument. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Table 2
Critical bands for eventual spaceflight ASPEN detection strategy.

CH4 vapor H2O vapor H2O ice CO2 vapor CO2 ice

Wavelength
(μm)

1.429 1.59247 1.4–1.75 1.44–1.45 1.435
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CO2 rich atmosphere [65], and the occurrence times have
been linked to wave induced cold pockets in the Martian
mesosphere, although the observed opacities suggest an
external nucleation particle source (meteorites) is necessary
[66].

An analysis of MCS observations [2] also indicated
substantial cloudiness during the polar night, assumed to
be composed of CO2 ice due to the cold atmospheric
temperatures. However, being a limb sounder, the MCS
instrument cannot regularly access the lower 10–15 km of
the vertical column of the Martian atmosphere, where the
lion’s share of atmospheric dust and ice reside. This
limitation is the result of the physics of radiative transfer
(i.e. multiple scattering effectively obscures any informa-
tion from this region [67]). Models of the MCS observa-
tions suggest that the sounder dataset often misidentifies
CO2 clouds as H2O clouds 40% of the time [68,69].

Understanding the distribution of CO2 ice clouds is
important because they may have a net surface warming
effect [70–72] and may initiate vigorous mixing of the
polar night atmosphere, affecting the vertical distribution
of temperatures, aerosols and gases [73].

MOLA was optimized for topography mapping, not
cloud detection. MOLA was able to detect clouds that lay
within 20 km of the surface, and it found clouds mostly on
the nightside and in the winter polar hoods of the planet
[37,40]. Tantalizingly, MOLA found two types of clouds
based on height and structure of the return echoes [38];
however, MOLA could not (1) detect clouds at greater than
20 km altitude; (2) distinguish definitively between CO2

and H2O ice; nor (3) measure albedo or detect presence of
gas/dust jets over the seasonal CO2 ice caps (low dynamic
range caused saturation).

Nonetheless, coincident TES brightness-temperature
observations and radio occultation measurements led MOLA
researchers to suggest the clouds they observed in the polar
hoods were most likely CO2 ice clouds [38] and CO2 ice
precipitation [74]. MOLA also observed some mid-latitude
nighttime clouds that may have been composed of H2O ice
[40]. Confirmation and extension of these observations and
identification of CO2 or H2O clouds is critical to improving
our understanding of the Martian thermal budget.

3.2.2. Polar hood water ice clouds
The polar caps are covered by water ice clouds during

winter and these will be a major focus of the ASPEN mission.
The internal structure of clouds and precipitation

streaks were observed over a limited region of the Martian
north pole by the Phoenix lidar [42] in addition to near-
surface fogs [75]. These lidar cloud observations indicate
Martian cloud internal structure is likely quite variable and
information-rich. Detection of planet-wide four-dimen-
sional (three spatial dimensions and variations with time)
cloud decks and mapping of precipitation should be
possible using ASPEN.

North–south polar hood comparison: The Martian polar
hood clouds play a role of transporting water ice from the
polar caps towards the equatorial regions. The northern
hemisphere of Mars is comparatively water ice rich and as
a result the northern polar hood has higher optical depth
than the south polar hood [76]. The north polar hood lasts

longer (75% of the Martian year, from Ls¼150–301 com-
pared to 50% of the Martian year, Ls¼10–701 and 100–2001
[77]) and encloses the entire cap, whereas the south polar
hood is an annular ring [78]. Benson et al. [77] established
that the south polar hood is composed of two decks, and
ASPEN is well suited to investigating and contrasting the
physical properties of both decks, including grain size,
shapes and orientations.

Vortex clouds around the edge of the cap, including
streak clouds and lee wave clouds, have been observed in
the north (where they are more common) and in the south
(where they are much weaker) using Viking orbiter [79]
and Mars Orbiter camera images [80]. “Annular bands” of
low ice and dust opacity have been detected using the TES
instrument over the north pole, perhaps indicating “flush-
ing dust storms” [81]. These annular bands have not been
detected in the south polar region, perhaps because of the
thermal response of the surface which may corrupt the
observations. ASPEN is ideally suited to determine whether
the annular bands and streak waves are related. The
instrument will carry out searches for these features in
both north and south polar regions with high sensitivity.

Montmessin et al. [25] modeled many of the properties
of the polar hood using a Global Climate Model. They
predicted the strengthening of polar hoods at the start and
end of the winter season, which will be verified by ASPEN.
Montmessin et al. also modeled streak or sprial waves, and
found that they only developed structure in the north
polar region, where the hood clouds were much stronger.

ASPEN is ideally suited to determine whether the
annular bands and spiral streak waves are related. The
instrument will carry out searches for these features in
both north and south polar regions with high sensitivity.

3.2.3. Cloud nucleation and ice crystal shapes
There have been numerous attempts to model the grain

shapes of CO2 and H2O ice particles that would be appro-
priate to Mars, including experimental observations of CO2

ice grains formed under Martian conditions that are
octahedrons (or bipyramidal) [82], and theoretical models
of CO2 ice grains suggesting cubic or truncated octahedral
forms [83]. Because cuboctahedra are not oriented by air
resistance as they fall, CO2 ice clouds on Mars may not
produce sundogs but will produce halos [84].

As already discussed, ASPEN will measure the back-
scattered Mueller matrix polarization and measure the
linear depolarization ratio in order to shed light on the
shape (in particular the asphericity) of ice cloud particles
as a function of height. The multi-wavelength nature of the
observations will also shed light on small (1 μm and
smaller) size distributions [85], potentially shedding light
on ice nucleation dynamics [86] and surface alteration
processes for amorphous phases [87,88]. Thus, ASPEN will
be able to address grain sizes and shapes for multiple
coincident cloud decks.

3.3. Science theme three – dust aerosols

ASPEN is designed to be sensitive to Martian dust and
aerosols. Virga (fall streaks) and precipitation mapping are
key parts of our third science theme.

A.J. Brown et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 153 (2015) 131–143136



Suspended dust also will have an effect on the detection of
ice clouds. This will be particularly true during southern
summer dust events. There is evidence that most Martian
dust displays a limited size range (average grain sizes of 1.3–
1.8 μm [89]) and the polarization returns of these particles
will be different from very fine CO2 ice clouds [90] – although
some water ice clouds may show similar characteristics. The
polar regions experience lower amounts of dust than the rest
of the planet [91] however the effect of dust aerosols is of
critical importance. Dust storms are a repeating global phe-
nomenon, affecting the albedo of the polar caps, with many
local and regional storms originating in the polar regions and
following “dust tracks” across the Martian globe [92].

3.3.1. Polarization measurements
The proposed instrument would be the first to obtain

polarization measurements of planetary materials under
Martian conditions over the 1.4–1.7 μm region. Previous
terrestrial studies have proven the utility of polarized light
scattered from ice crystals in the atmosphere [93] and on
snowpack surfaces [94–96]. ASPEN will be capable of
measuring the full Stokes vector returned from the line-
arly/circularly polarized transmitted beam.

3.3.2. Discriminating dust aerosols and ice particles
The eventual space instrument will discriminate dust

from ice using (1) absence of CO2/H2O ice absorption
bands, (2) polarization returns, and (3) detection height
to discriminate airborne dust. Methods have been devel-
oped for analyzing the depolarization ratio from CALIPSO
to characterize the size distribution of airborne dust [97].
ASPEN’s multi-wavelength capability will enhance the
effectiveness of this method.

3.3.3. Rationale for full Müller matrix measurements
The Stokes Vector (Stokes, 1852; van de Hulst, 1957) is

used to describe an electromagnetic field E, with perpen-
dicular and parallel amplitudes E┴ and E|| is defined as

I ¼ 〈E JEn

J 〉þ〈E?En

? 〉

Q ¼ 〈E JEn

J 〉$〈E?En

? 〉

U ¼ 〈E JEn

? 〉þ〈E?En

J 〉

V ¼ i 〈E JEn

J 〉þ〈E? En

? 〉
! "

ð1Þ

where angle brackets indicate a time average and asterisks
indicate complex conjugation.

The optical effect of an atmospheric component may
then be expressed using its angle-dependent, light scatter-
ing Müller matrix as follows:

I ¼M; I0 ¼

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

0

BBBB@

1

CCCCA

I0
Q0

U0

V0

0

BBBB@

1

CCCCA
ð2Þ

where subscript 0 means ‘incident’ and the Müller matrix of
an optical system is represented by elements M11,…,M44.
Normal optical remote sensing only measures element M11

and passive linear polarization experiments measure M11,
M21 and M31. Passive circular polarization experiments
measure M41. Active Müller matrix measurements, such as

the project proposed here, measure all 16 elements of the
Müller matrix.

ASPEN will measure the backscattered depolarization
(degree of linear polarization or DOLP) ratio, which will
give further information on particle sizes and shapes. In
terms of the returned Stokes matrix, the equation for the
DOLP is

DOLP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þU2

$ %r

I
ð3Þ

Spherical or near-spherical hydrometeors (e.g. ice or rain
drops) do not depolarize backscattered light; whereas, hex-
agonal crystals and other shape do. The DPOL ratio for
spherical droplets is 0 due to symmetry and typically 0.2–
0.8 due to scattering from a variety of asymmetric ice particles
[98]. This phenomenon is used in the analysis of CALIPSO
cloud data to detect oriented ice plates in terrestrial clouds
[99]. On Earth, lidar measurements have been used to map
the internal structure of clouds where grain shapes change
[100–103] and determine the height of oriented crystals and
rain clouds [104]. CALIPSO data have also been used to map
instantaneous connections between cloud vertical structure
(via particle orientation) and large-scale climate [105]. This
application offers exciting possibilities for the mapping of
large scale Martian weather cycles with ASPEN.

ASPEN will also create maps of the backscattered
degree of circular polarization (DOCP) ratio, which in
terms of the returned Stokes matrix is given by

DOCP ¼
V
I

ð4Þ

Circular polarization has been shown to decrease with
length of travel through a diffuse target (the circular polariza-
tionmemory effect [106]). Circular polarizationmeasurements
are much less common in lidar instruments, but by measuring
the circular depolarization of Martian clouds we anticipate to
be able to measure their optical depth independently [107] of
the degree of returned power, which will put tighter con-
straints on the inverse problems required to solve for the
characteristics of the Martian atmosphere. The degree of
circular polarization ratio has also been proposed to help
discriminate cloud particle sphericity [108].

Fig. 6 displays 16 Müller matrix hemispherical maps for
spherical targets produced using the adding-doubling
approach [109]. The symmetry of these hemispherical
maps [110] allows us to differentiate spherical and non-
spherical and Rayleigh scattering target materials [90], and
this capability is an important aspect of the ASPEN aerosol
and cloud mapping approach.

3.4. Science matrix

Table 3 presents the science matrix for the ASPEN
project. The three scientific themes of the instrument
(Surface, Ice Clouds and Dust Aerosols) are linked to
project science objectives. The objectives are then
addressed individually by the instrument capabilities.

Fig. 7 gives a diagrammatic representation of the
instrument and science themes of surface, ice clouds and
dust aerosols.
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4. Implementation paths

4.1. Technological approach and methodology

Multi-wavelength laser operations are challenging and
will remain so for the foreseeable future. However, an
opportunity exists to use fiber laser amplifier technology
developed by the telecommunications industry to make
critical measurements in a spaceflight mission.

The currently envisioned spacecraft instrument utilizes
multiple diode lasers, each operable at a different wave-
length, amplified by a fiber laser stage. The receiver side
will consist of a telescope coupled to an indium gallium
arsenide (InGaAs) multi-pixel avalanche photo detector
(APD). The eventual flight instrument will be scaled to
operate at ranges of 250–320 km, similar to the MRO orbit.
This is around half the altitude of the "700 km altitude
CALIPSO mission.

Fig. 6. Müller matrix images of backscattered photons scattered from spherical target modeled by using an adding-doubling radiative transfer model.
The laser is incident normal to the target. Color scales indicate intensity relative to the M11 element. From [90].
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4.2. Radiometry analysis of spaceborne ASPEN instrument to
meet science objectives

Eq. (5) is a simplified single-scattering lidar equation
[111] adequate for the evaluation of the feasibility of the
proposed approach and for estimating the approximate
laser pulse energy and receiver aperture size needed for

the proposed ASPEN system:

E Rð Þ ¼ E0
λ
hc
ξB

Ar

R2

& '
T2 ð5Þ

where E is in photons returned from range R, given the
transmitted pulse energy E0 in Joules, ξ is the receiver
efficiency factor, B is the target backscatter efficiency factor
(for hard targets B¼surface reflectivity (sr$1), for distrib-
uted atmospheric targets (aerosols and clouds) B¼
Bπ Rð Þc δt=2 where βπ is the volume backscatter cross
section (m$1sr$1), Δt the receiver range bin integration
time, and c the speed of light), T the transmission of the
atmosphere between the lidar and the target, Ar the area of
the receiving telescope, and h is Planck’s constant.

The receiver efficiency factor ξ takes into account (1)
the transceiver optical losses including spectral filtering
and (2) the detector collection efficiency. For the first
factor, a high optical efficiency with a narrowband filter
for daylight ops may reach "50% (this may be as good as
70%, but we are being conservative). For the second factor,
a good photon detector will have a collection efficiency of
"30%. So, a practical efficiency factor should be ξ "15%.

Table 3
Science matrix for the ASPEN project, linking science themes and objectives of the instrument to capabilities of the proposed instrument.

Science themes Measurement objectives Instrument requirement

Science Theme 1. Surface. To detect, map and
quantify deposition of H2O and CO2 ice during the
polar night

1. Composition. Differentiate surface CO2 ice and H2O
ice

Use NIR laser DIAL technique to
differentiate ices

2. Grain shape and size. Map CO2 ice and H2O ice grain
size/shape properties

Use DIAL and polarization to map
ice properties

3. Seasonal changes. Map changes in height as ice is
deposited

Use timed laser returns to create
high res DTMs to find changes in
snow pack height

4. Seasonal changes. Determine nature of slab ice south
cryptic region [4,8] and re-observe transient “halo”
events [117]

Use NIR laser reflectance DIAL
technique to differentiate ices and
polarization to determine
properties

5. Nadir soundings. Monitor thermal cold spot activity
and determine whether they are due to CO2 snow, CO2

clouds, blizzards or surface ice [63,74,119]

Use NIR laser reflectance DIAL
technique to differentiate ices and
polarization to determine
properties

6. Surface pressure. Monitor surface pressure and
partial pressure of H2O and produce global, seasonal
maps of surface pressure dynamics

Use NIR laser reflectance DIAL to
derive total atmospheric pressure
and also H2O partial pressure

Science Theme 2. Ice Clouds. To identify and map
fogs, clouds and cloud properties inside and outside
the polar hood, on a daily basis.

1. Nadir soundings. Map cloud heights up to 100 km
above Martian surface, detect multiple clouds decks

Use NIR reflectance to measure
albedo of cloud ice particles

2. Composition. Determine cloud compositions and find
CO2–H2O ice clusters [118]

Use NIR multiple channel DIAL
reflectance technique

3. Grain shape and size. Map cloud particle albedo, size
and orientation

Use polarization to measure albedo
of ice particles

4. Nadir soundings. Discriminate fogs from H2O ice
deposition on both CO2 ice caps [15,16,58]

Use timed laser returns to
discriminate low fogs from surface
ice

Science Theme 3. Dust Aerosols. Map dust storms,
planetary boundary layer, precipitation and aerosol
loads and particle geometries and orientations on a
daily basis

1. Nadir soundings. Map Planetary Boundary Layer and
aerosol particle heights all mission, determine dust
cloud internal structure and observe multiple decks

Use timed laser returns and
strengths to map aerosols in
atmosphere

2. Grain shape and size. Map dust aerosols properties Use NIR polarization to measure
particle properties

3. Seasonal changes. Map increased dust activity over
south pole geysers

Use timed laser returns and full
Stokes polarization to detect geyser
dynamics and timing

4. Nadir soundings. Map convective CO2 cloud towers
[21]

Use polarization to detect particle
orientation/dynamics

Fig. 7. Diagrammatic representation of ASPEN Instrument science
themes.
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The transmission factor T is the transmissivity of the
atmosphere. With no dust or clouds, T would be near 1 in
the thin Martian atmosphere. On Mars there is a minimal
background dust opacity, so we will choose a transmission
T"0.9 so that T2"0.81.

Background Light at Mars. We can calculate the back-
ground light at Mars as follows:

Ebg ¼
λ
hc

& '
π θ=2
! "2δScBξAr ð6Þ

where θ is the instrument field of view (assumed 150 μR,
see Table 1), δ is the filter bandpass (assumed 1 nm) and Sc
is the solar radiance at Mars at 1.5 μm (based on a figure of
0.25 W/m2/nm at 1.5 μm at the top of Earth's atmosphere,
and scaled to Mars using Sc ¼ 0:25 Dearth=Dmars

! "2

¼ 0:25 150'ð 109=228' 109Þ2 ¼ 0:108 W=m2 nm). Using
these values in Eq. (6), we calculate:

Ebg ¼
1:5' 10$6

6:6' 10$34 ' 3' 108π 150' 10$6
$ %

=2
$ %2

' 1' 10$9
$ %

0:108ð Þ 0:08ð Þ 0:15ð Þπ 0:8=2
! "2

which comes to 1.09 photons/s. When this is multiplied by
a typical range bin of 200 ns, we have a background of
2.2'10–7 photons/shot/30 m range bin.

Detector dark current: Noise due to detector dark current is
inherently produced by any cooled detector. For our NIR
application, a typical figure of 200 dark current photons/
second is typical, and again assuming a range bin of 200 ns,
this translates to 4'10–5 photons/shot/30m range bin.

Thus the expected background light at Mars is less than
the expected detector dark current, but they are both
expected to be small in comparison to expected photon
collection rates for typical targets for each science theme,
which we now calculate.

Science Theme 1. Surface (hard target) sensitivity: For
returns from a hard target with an albedo of 0.5 (a typical
Martian CO2 ice NIR albedo [1]) and diffuse surface reflec-
tivity "0.08 sr$1 (divide albedo by 2πsr) and receiver
diameter "0.8 m (see Table 1), pulse energies of "40 μJ
will produce the following calculation using Eq. (5):

E Rð Þ ¼ 4'
10$5 ' 1:5' 10$6

6:6' 10$34 ' 3x108 ' 0:15ð Þ

' 0:08ð Þ
π ' 0:8=2

! "2

2:5' 105
$ %2 ' 0:92 ¼ 23 photons=shot

Science Theme 2. High altitude clouds (Diffuse target)
discrimination sensitivity: Measurements by Felton et al.
[112] suggest that βπ for terrestrial polar stratospheric clouds
(PSCs) are "1–10'10–7 m$1 sr$1. Assuming βπ¼1'10–
7 m$1 sr$1 for Martian PSCs, a range to the PSC of 180 km
(i.e. cloud top height of "70–100 km [64], a 0.8 m class
receiver, and a 30m range integration gate (Δt¼200 ns), Eq.
(5) suggests signal strengths of "0.007 photons/shot/30 m
range and a SNR "10 can be achieved in 0.32 s, suggesting a
spatial resolution in tenuous clouds of at least 1100m in
Martian stratospheric clouds is feasible.

Science Theme 3. Dust Aerosols and Low clouds (Dif-
fuse target) sensitivity: Assuming returns from low alti-
tude Martian dust aerosols and water clouds or fogs have

similar characteristics to terrestrial dust and fogs [113],
βπ"2.2'10–3 m$1 sr$1 at 532 nm, and scaling by λ$1 for
particles large compared to the wavelength, βπ at 1.5 μm
is"7'10–5 m$1 sr$1. Eq. (5) suggests ground fogs or dust
should produce "0.97 photons/shot/10 m range gate from
a 250 km altitude with a 0.8 m class receiver. Positive
identification of CO2 or H2O ice composition over the
surface can be made with an optical signal-to-noise ratio
(SNR) "10 (i.e. "100 photons measured) that can be
achieved in 23 ms at a 4.5 kHz pulse rate (all wavelengths
can be used for cloud detection), suggesting a ground
sampling resolution of 78 m in fog or dust is feasible.

4.3. Martian mission operations

As currently envisioned, the ASPEN instrument would
operate as a line profile instrument, in a similar manner to
the MOLA lidar [114]. The instrument is best suited for an
MGS or MRO-type 250–320 km circular orbit but could
also operate in an elliptical orbit with reduced sensitivity
during apoapsis. For optimized polar measurements, orbi-
tal inclination should be between 851 and 92.81 [31]. An
elliptical orbit such as that mentioned in the MSO SAG
document [115] would allow lidar-occultation measure-
ments of the atmosphere, allowing the atmosphere to be
viewed ‘side on’, thus enabling profile measurements of
CO2, H2O ice and vapor in the Martian atmosphere.

Variable local time overflight times: Because ASPEN is not
limited to daylight observations, and because much of the
Martian phenomena we wish to observe is diurnally variable,
we intend to vary the local time of overflight during the
mission in order to further constrain the proposed hypotheses
for each phenomenon. This will be of great utility for
examining cold jets activity in the Cryptic region, for example.
We anticipate observations over 4 temporal overpasses during
the mission for example, with 3 am/3 pm, 6 am/6 pm, 9 am/
9 pm and noon/midnight observations (each for 2–3 months),
although this will have to be tuned as the instrument is
prepared for launch, depending on the Mars season and
targeting priorities.

Because of its ability to directly detect and discriminate
water ice and CO2 ice clouds, the instrument would be directly
applicable to four of the ten science goals of the Planetary
Science Decadal (PSD) Survey Mission Concept [116] listed in
Table 4. The instrument would operate in both day and
nighttime conditions, with greater precision during the night-
time due to less reflected background sunlight entering the
instrument. During one Martian year of operations, a full

Table 4
Relevance connections with proposed Planetary Science Decadal Survey
Missions.

Planetary Science Decadal Survey Polar
Mission Concept Goals [106]

Relevant science theme
of this project

1. Mass, density and volume of seasonal
CO2 ice

1. Surface

2. Accumulation/ablation rates
10. Energy exchange during polar night 2. Clouds
8. Transport of water and dust in and out
of polar regions

3. Aerosols
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summer and winter would be observed at each pole. This
would allow an assessment of seasonal cloud and surface
volatile activity in addition to monitoring the dynamics of
surface and atmospheric pressure and partial pressure of H2O
vapor. This would achieve the top level goals of the instru-
ment and would be considered a complete science mission.
An extended mission of an extra year of Martian operations
would allow interannual comparisons and additional coverage
of the ground surface.

4.4. Other planetary science missions applicable for the
proposed instrument

We are emphasizing the utility of the ASPEN lidar instru-
ment for an orbital Mars mission; however the same type of
instrument would be applicable for a range of future missions.
It would be ideal for missions to ice covered bodies (e.g.
Europa, Enceladus, Triton, even methane ice on Kuiper Belt
objects) to investigate the properties of icy surfaces in low
sunlight conditions. As part of a Discovery class mission to
cometary bodies the system would be ideal for probing the
physical properties of a coma. The instrument could also be
used in a Venus orbit to probe cloud properties and structure
in NIR windows of the Venusian atmosphere.

5. Conclusions

We have outlined the science case for a polarization lidar
for an eventual orbital mission to Mars. The combination of
active, multiple-wavelength measurements with polarimetry
makes this instrument concept an essential option in the
future inventory of spacecraft instrumentation.

The lessons learned from such an instrument would
fundamentally shift our understanding of modern day
volatile transport, deposition and would also have astro-
biological implications for past, present and future life
on Mars.
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