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1 High atmosphere equations

1.1 Boltzmann equation (Week 8)

We now proceed to derive the equations of motion from the Boltzmann equation that
describes the evolution of the 7-dimensional phase space distribution function. The
derivation of the Boltzmann equation can be found, for example, in Chapter 5 of Gom-
bosi (1994). The number of particles in the d*rd*v phase space volume element around
(r,v) at time ¢ is

d°N = F(t,r,v)d*rd’y (1)

where F(t,r,v) is the phase space distribution function (m™ s*). It is important to note

that z, r and v are assumed to be independent variables. Then the Boltzmann equation is

oF OF 0 oF

E*‘V[‘a—xj‘i‘a‘)i (Cl,‘F):E (2)

where repeated indices imply a sum and dF /0t is the rate of change of the distribution
function due to collisions. In most applications, the acceleration is such that da; /0v; =0,
which applies to gravity and the Lorentz force. Therefore, we have

%—I;'F\/ia—F-l'aia—F:é—F (3)

where the left hand side is the material derivative in six-dimensional phase space.
It is convenient to write the random thermal velocity as

c(t,r)y=v—u(,r) 4)
where u is the bulk flow velocity:

[dwE(,r,v)
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Repeating the derivation of the Boltzmann equation in Gombosi (1994) with c(z,r)

yields the transformations

OF(t,r,V)

OF(t,r,c) B Ou;(t,r) OF(t,r,c)

ot ot ot ac; ©
OF(t,r,v) OF(t,r,c) B Ou,(t,r) OF (t,r,c) 7
Ox; 0x; 0x; dc;
OF(t,r,v) OF(t,r,c) 8)
Ov; Jc;
With these transformations, the Boltzmann equation for F(z,r,c¢) is
%—f+(ui+c,~)g—i— %+(uj+cj)g—2—ai g—i=55—f 9)

1.2 Collisions (Week 10)

An extensive treatment of the collision problem is out of scope for this course. Below,
we simply sketch some basic principles. Please refer to, for example, Chapters 3 and
5 in Gombosi (1994) for a more thorough treatment. The number of particles with
velocities between v and v, +dv; (group 1) scattered by collisions with a single particle
that has a velocity between v, and v, +dv, (group 2) into a solid angle element df) in
direction g’ per unit time is

dN, =1,5(g, g)d (10)

where g = v| — v, is the relative velocity vector of the particles, /; is the flux of group 1
particles (m™2 s7!) at relative velocity between g and g+d>g impinging on the group 2
particle, and S(g,g’) is the differential collision cross section. Note that the particles in
groups 1 and 2 can be like or unlike particles.

We assume spherically symmetric central force fields and simplify the collision
cross section accordingly. We define x as the deflection angle away from the origi-
nal direction of g and note that for central force fields, the interaction between particles
is a planar motion specified by a constant azimuth angle € around the direction of g.
Therefore, the differential cross section is S(g,g’) = S(g, x) and the solid angle element
is d2 = sin ydyde. Then, the flux of group 1 particles impinging on the group 2 particle
is I, =gF(t, I‘,V])d3V1 and we have

dN, = gS(g, x)sin xdxdeF (1,1, v,)d’vy. (11)

Thus, the total number of interactions per unit time and unit volume for particles with
velocity between vy and v; +dv; and particles with velocity between v, and v, +dv; is

dN12 = gS(g, x) sin xdxdeF (¢,x,v)F (t,r,v2)d>v d*v, (12)

where we used the phase space distribution function to express the number density of
group 2 particles.



1.2.1 Boltzmann collision integral

We will make the following assumptions: (i) only binary collisions are taken into ac-
count and the gas is presumed to be sufficiently dilute to justify this assumption, (ii)
velocities are assumed to be statistically independent and correlations between the posi-
tion and velocity of the individual particles are ignored (molecular chaos), (iii) particles
and associated force fields are spherically symmetric, (iv) the scale length of the dis-
tribution function is much larger than the range of intermolecular forces, (v) the effect
of external forces on collision cross sections are ignored, and (vi) the phase space dis-
tribution function does not change significantly during the time interval of molecular
collisions.

The collision integral is the sum of collisions that deplete (-) and replenish (+) the
particles with velocities between v, and v; +dv; inside the phase space volume element

at a given location 1.e.,
SF  (O6F\" [O0F\~
=) (%) (42

We divide equation (12) by d’v; and integrate to obtain the rate of change in F (m7° s 57!

due to collisions that deplete particles with velocities between v; and v; +dv;:

+ 27 T
((;—I;) :/d3v2/ de/ dysinxS(g, \)gF (t,r,v)F(t,r,v;) (14)
0 0

where the total collision cross section is defined as

N

2 T
o(g) = / de / dsin xS(g ). (15)
0 0

The rate of change in F' due to collisions that replenish particles with velocities between
v; and v; +dv; can be written as

5F + 2 T
(5) - / v, / de / dysinxS(e, gF (LT, VDF(,r,vh)  (16)
0 0

where the superscript ’ denotes initial velocities (while the lack of superscript denotes
final velocity). Deducting the depleting collisions from the replenishing collisions gives

§F o
gz/d%z/ de/ dysinxS(g,\)g (F'F,~FF), a7
0 0

which is the total collision integral.
We will generally work with the Boltzmann equation in the thermal velocity space.
Following the steps above, we could have just as easily argued that

F 27 s
(iS_t :/d3c2/ de/ dxsinxS(g,x)g (F'FQ’—FFz), (18)
0 0
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where the phase space distribution functions are F = F(¢,r,c¢;) and F, = F(t,r,¢;). Also,
for a single species s in a multi-species gas, the collision integral is

5};; 21 ™
=3 [ [ ae [ asinste g (R -EE) (19)
- 0 0

where the sum is over all species ¢, including s.

1.2.2 The equilibrium distribution
In equilibrium, the collision integral vanishes and the Boltzmann equation becomes

OF OF {@ Ou, }0F_

_+(ui+Ci)a_xl~_ a)f +(uj+cj)a__xj_ai a—Ci—o, (20)

ot

which means that F'F, = FF, i.e, that In F is a summation invariant (conserved quantity)
of the collisions. Noting that the conserved quantities in collisions of particles without
internal degrees of freedom are the momentum vector and kinetic energy, it can be
shown that the equilibrium distribution is the Maxwell-Boltzmann (M-B) distribution

(Gombosi, 1994):
m \3/2 mc?
Fr,0=nm (50) exp(‘ﬁ) @D

where n is the number density.

1.2.3 Collision term with the normalized distribution function

We can write the collision term (12) by using normalized distribution functions as:

dNy, = gS(g, x) sin xdxdenny f(v1) f(v2)d v, d*v, (22)

where n; and n, are number densities. In general, the normalized distribution function

is defined as Fe.v)
r,v
fr,v)= P

(23)
which normalizes to
/ dvfr,v) = L / d*vF(r,v)=1 (24)
n(r)

to comply with the definition of the phase space distribution function. In equilibrium,
the normalized M-B distribution function does not depend on position. Now, the total
number of encounters per unit volume per unit time is

N> = ks / &y, / 250 () f (V) f (V) 25)

4



where k1, = 1/2 for like particles and xj, = 1 for unlike particles to prevent double
counting of like particle collisions in this integral. We can use the M-B distribution to
write this as

m 32 [ mirg*
Ny =4mkiann, (ﬁ) /0 go(g)exp (— 21k2§ > dg (26)

where m,, is the reduced mass.

1.2.4 Binary chemical reaction rates

The rate coefficient for chemical reactions is an application of kinetic theory. Consider
a reaction of two particles. The intermolecular potential U of these particles is faintly
attractive at relatively large intermolecular distances but becomes strongly repulsive at
close approach. If the particles have sufficient energy to overcome the potential barrier
(activation energy U)) to be brought within the reaction distance d of each other, they
will form a short-lived compound molecule that decays into the reaction products. The
interaction cross section is

o(g) = 0oH(g—go) (27)
where H is the Heaviside step function and

2U,
go=1/——. (28)
mip

Thus, we can integrate equation (26) to obtain

8kT Uy Uy
Zip = - 1+— . 29
12 = K12001 12 S— eXp ( kT) ( kT) (29)

If we assume that U, >> kT, we can write the binary reaction rate coefficient as

Z» 8kT
=00
R12n113 ™o

aexp(—a) (30)

where o = Uy /(kT). This expression motivates one of the standard expressions for the
reaction rate coefficient in photochemical models:

k Ty (-%) (31)
=a(-——| expl—=
2= 300) “P\T
where a, b, ¢ are fit coefficients. An upper limit can be obtained by crudely writing
kiz ~ Q{vr) (32)

where Q is an estimate of the cross section based on the rough molecular diameter
(Q ~ 5 x 107" m?) and (v7) is the mean thermal velocity.
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1.3 Maxwell’s equation of change (Week 11)

Consider a molecular quantity W(c) that is independent of time and spatial location (i.e.,
given a value of ¢, the quantity always has the same value). The average value of this
quantity is simply given by

(W) = % / d*cW(e)F(t,r,c). (33)

Setting W = 1 then gives the obvious result that

n= / Fd’c (34)

and setting W =c is
/ ciFd’c=0 (35)

because c; is the random thermal velocity that must average to zero.
We can now use the Boltzmann equation to track the evolution of the quantity W(c)
by writing:

OF OF  [Ou; ou; | OF SF
3 - 4o —— | — 4o ——a.| —\ = 3 -
/d cW(c){ o Tte) oo { o + (uj+c;)) o, al} ac,} / deW (). (36)

Here, we write

oF 0 0
3 o _ 9 3 _Y
/ dcW(e) - o / W (OF = o (n(w)) (37)
oF 0
/d3CW(C)Mia—Xi = uié_xi (I’l<W>) (38)
oOF 0
/d3CW(C)CIa_xl = a—XZ (l’l(ClW>) (39)
because ¢; and ¢ are independent and u; does not depend on c¢;. Also, we can write
OF OWF) ow ow
3 or _ 3 oWwWr) 3. poW o _ O
/ d’cW(c) e / d’c oc, / d’cF ac, n{ aci> (40)

because the first term in the middle is a perfect differential and F — 0 at ¢; = F-o0.
Employing the same logic, we also obtain

OF oW
3 2 - _ o

/ d’cW(c)a; ac, n{a; aC,'> 41)
OF oW

/ d3cW(c)cja—Ci = —n(cja—Ci>—n5,~j<W>. (42)



Thus, we have derived new expressions for all of the terms on the r.h.s of equation (36).
Lengthy algebra can be employed to demonstrate that, in the absence of chemical
reactions (e.g., Gombosi, 1994),

OF oW
EeWe)— = —=A[W
/ ¢ (c)& ot Wi

1 2w s
=§/d3c/d3cz/ de/ dxsinxS(g,x)g (W +W, —W -W,) FF,. (43)
0 0

For species s in a multi-species gas, the collision integral is

5WY 271' T
ot = / d’c, / d’e, / de / dy sinxS(g, x)g (W, -W,) FF; (44)
t 0 0

where the sum is over all species ¢. Using the collision integral and the other terms in
equation (36) gives the result

0 0 0 ow 8u,- 81/11'
PR (n(W}) +8_x,- (nul<W>) +3_xl~ (n(ciW>) +n<3_c,> <E +uj8_xj>
+n( W\ Oui 10y = A w1, 45)

Cja—cl)aj—”( ac,

which is Maxwell’s equation of change.

1.4 Equations of motion (Week 11)

Maxwell’s equation of change can be used to obtain equations of motion at different
levels of approximation. As we will see, the level of approximation depends on the
closure of the transport equations. In order to retain generality, we consider species
s in a multi-species gas, noting that all of our derivations carry over to this case and
interactions between different particles are captured by the collision integral.

1.4.1 Equation of mass continuity

We begin by deriving the equation of mass continuity by using Maxwell’s equation of
change with W, = m;. This gives

0 0
— (py)+—=— (psu;) = Py—L; 46

at (p.&) axl (pA l) N S ( )
because (cy;) = 0, the derivatives of m; with respect to c; are zero, Py is the chemical
production rate and L; is the chemical loss rate. The number density 7, is a zeroth order
moment of the distribution function. In the absence of chemical reactions, the right hand
side is zero since kinetic collisions do not alter species mass.
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1.4.2 Momentum equation

The momentum equation is extracted from equation (45) by setting W, = m,c,, keeping
in mind that (cy) = 0 and noting that

ank
— = (5 i 47
g, = (47)
Thus, it is easy to show that the momentum equation is
aI/tsi aMsi 8Psik 5Msi
s T Uy + — Ps\lsi) = 48
Ps ( at M-J 8Xj ) 0xl- Ps <Cl > 6l ( )
where
Psik = Ps <Csicsk> (49)
is the pressure tensor, the acceleration is
(a) =g+ (E+u, x B+e, x B) =g+ > (E+u, x B), (50)
mS mS

where e, is particle charge, and JM,/dt is the momentum transfer collision integral.
Thus, the general momentum equation in inertial space is

8usi 8”51’ 8Psik aMsi
s + Uy, + —ps8i—nses(Ei+€;usjB)) = ——
P < ot ”‘faxj) o, Pesi e Eit eittsiB) = =5,

(51

where ¢;;; is the Levi-Civita symbol. The components of the bulk velocity vector con-
stitute three first order moments of the distribution function.

It is useful to recognize that the diagonal elements of the pressure tensor are equiv-
alent to kinetic pressure and the trace of the tensor is Py; = 3p,. Thus, we can write the
pressure tensor as

Pyix = psOix+ Toix (52)

where the trace of the deviatoric stress tensor 7 is zero. Note that the vector component
of gravity is positive, the direction to be specified later i.e., for vertical gravity g, = —g.
1.4.3 Pressure tensor

In order to derive an equation for the pressure tensor, we set W, = mycqy.cy in equa-
tion (45). This yields

OPyy Ou; OPyq  0Qsin Ougy Oug

~ +P, +U——+ +Pi——+ Py —

o M ox ox  ox  ox; Moy
0Py

ot

(53)

—Ps <askcsl +ag Csk> =



where

Qsikl = ps<csicskcsl> (54)
is the heat flow tensor, 0Py, /Jt is the pressure tensor collision integral and we used
a(cskcsl)
< Dee > = <6kicsl +5l,-csk> =0 (55)
a(Cskcsl ) ausi ausi ausk ausl
s\Csj véis s'+5iv sj =rg;j +P9' . 56
ps{csj I, >8xj Ps{OkiCsiCs; lC‘kCﬂaxj g, TP (56)
Let us now evaluate the acceleration terms. We have
e e
(ages) = (gres + ;Ekcsl + ;(EkabcsaBb + €xaplsaBp)Cs1)
e ’ e, ’ e
= <_6kabcslcsaBb> = _EkastlaBb = _Ps x B (57)
My my my
e e
<aslcsk> = __ElabBaPsbk =——B X Ps- (58)
mS )
because (cy) = 0. Thus, the pressure tensor equation is
OPyy Ou; 0Py 0Qysin Ougk Oug
+P +uy - +Py— +Pyj—
o M ox ox,  ox  ox, Moy
€s 5Ps
—= (xavPstaB — ErapBaPopt) = —. (59)
mg ot

The pressure tensor contains 9 elements but only 6 are independent because the devia-
toric stress tensor is symmetric. The independent elements constitute six second order
moments of the distribution function.

1.4.4 Energy equation

We may now note that
Psii = )OS<C?> = 3ps = 3nskTva (60)

which means that temperature can be obtained from

3 1
kT = = 2y 1
2k s 2ms<cs> (61)

We now recognize that the energy equation can simply be extracted as the trace of the
pressure tensor equation i.e., setting k = [:
8ps aMsi 8Ps 86]3‘1‘ 8usi 5ps

+3ps +3uy——+2—+2P; =3— (62)

o x; ox ox Vox; T ot




where the heat flow vector g; is defined as

1 1
qsi = Eps<csic§> = EQsijj- (63)
Thus, we obtain the energy equation
0 (3 0 (3 5 Oug 0q Oug; 3 0p;
—\ zps | tusi— | zps | t=ps—=—+ 5 +Tsij =3 o 64
ot (2”) o, (2”) 2P0 T ox T ox; T2 6 &)

where 7} represents a second order moment of the distribution function. Here it is useful
to recognize that for a monatomic or ideal gas
3 3k

~Ps=<— vT;= v STY 05
= g l=ep (65)

where ¢, is the specific heat capacity at constant volume.

1.5 13-moment equations (Week 11)

In deriving the equations of motion above, the reader will have noticed that one can
continue building up higher order moments indefinitely. We could obtain the heat flow
tensor equation from Maxwell’s equation of change but the equation depends on higher
order moments and so on. Different levels of closure are discussed in the literature,
ranging from 5 to 20 moments. We truncate the system at 13-moment level.

1.5.1 The 13-moment distribution function

The 13-moment distribution function is derived by using the Chapman-Enskog method.
In reasonable dense gases, deviations from thermal equilibrium can be treated as pertur-
bations to the M-B distribution function:

F(t,r,¢) = Fy(t,r,¢) [1+A(t,v)c;+Bij(t,v)cic;+ Dyt v)cic o] (66)

where Fy is the M-B distribution function and A, B, D are coefficient matrices. Note that
the 13-moment version of this expansion terminates at third order. Symmetry arguments
and normalization can be used to show that (Gombosi, 1994):

B; =0 (67)
A+ <3k7T) D;j; = 0. (68)
Further developments along similar lines (e.g., Chapter 6 in Gombosi, 1994) yield
Ps g ps
F;,=Fyo [1 + 2_p%7—sijcsicsj + p_é (gs - E) QSiCsi:| ) (69)
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which is the 13-moment phase space distribution function.
The heat flow tensor is extracted from this distribution function by taking the mo-
ment

Qsijk = Ps <csicskcsl>7
which is 5
Ositt = 5 (Oixgsi +0uqsic + Oraqsi) (70)

meaning that the heat flow tensor is now fully defined by the heat flow vector. Another
important moment that we will make use of later is the higher order stress tensor

1 5 kT, 7
ik = Eﬂs<6‘f€sicsk> = 2m. (Ps5ik+ gTsik) . (71)

1.5.2 Equation of mass continuity

The general equation of mass continuity (46) holds without additional developments:

0 0
5 (ps)+ a_xl (,Osusi) - Ps _Ls

where P, and L; are chemical production and loss rates, respectively.

1.5.3 Momentum equation

The momentum equation is

Ousi  Ouy\  Ops Oy oM,
ps( 0t +Msja_xj) + j —psg,-—nses(Ei+eij,usjBl): at

(72)

where the 13-moment collision integral is (Schunk and Nagy, 2000)

(SMS,' Zst Mgy ps
= sVs i— Usi)— Ky Yt Ysi ) - 73
St Zpyt(”t Ug;) let kT, p% q (73)

t

Here m,, is the reduced mass,
1
Iy = E(Ts + Tt)

is the average temperature of species s and ¢, and z, is a species-specific pure number
(see Chapter 4 in Schunk and Nagy, 2000, and other tabulations).
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1.5.4 Energy equation

The energy equation is given by:

2 § + 3 § 5 aust+aQSl+ ”ausz_B(Sps
o \ 2P ) "o \2P ) 2P n T an T ax, T2 ar

where the 13-moment collision integral is (Schunk and Nagy, 2000)

3 (5]93 PsVst 2
s :st+m, [3K(T, = T,) +my (us—u,)?] . (74)

1.5.5 Stress tensor equation

We start with the 13-moment pressure tensor equation

8]75 5](1 a;;kl +(pg5kl +Tvkl) 8 +u“ (aps 5](1 aTskl) +% <8qsk + 8QSI + aqsi 5k1)
Xi

ot 19) 0x; ox;  Oxi  Ox;
ausl €s 0
+(psdij +Ts1]) +(Ps5k] +Tsk1) — (€xapTstaBp — €kapBaTspi) = — (PO +Tia)
0x; ox; my ot

where we used the fact that

aQsikl — % aQSk + aQSl aQSt(S
Ox; ox;  Oxxy  Ox; M

(75)

We multiply the energy equation by (20,/3) and subtract it from the above equation:

aTskl 8”31’ aTskl 1 0 aust aQSk aqhvl 86] si
+ (POt + o) — + Usi—— — 50, + + 0,
g PO+ T g iy PO Ox,  ox | ox H
2 aQSt ausk 8usk aMsl aMsl [
5 -+ slj + + skj - a saB — Cka Ba K
"3, Kt 8xl Tslj ox; P o, Tokj ox; m, (€kabTs1aBb — €kabBaTspi)

2 8I/lsi(,)_ 57—51(1
—5Tsij 7 = 9
3 W 8)(]' M 5t

which gives the result:

aTskl 87-skl 8usi s
Uy + Tyl — — (€rabTs1aBp — €xabBaTsp1)
ot ox i Gxi s

2 (Oqg  Oqq 20qy Ouge  Oug 2 Ouy
— —— ) - 0
<8x1 * Oxy 3 Ox; W) 0x; * Oxy 3 Ox; M

aus aus 2 ausz 57—5
+Ti o k+7-skjg_l_§7sij%5kl: &kl- (76)
J J
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1.5.6 Heat flow equation

In order to close the system of equations, we need an equation that describes the evo-
lution of the heat flow vector, which is obtained by setting W = (1/ 2)mscfcsk in equa-
tion (45). It is straightforward but tedious to show that

aqsk aq‘yk aMsk aust aus ] 6;“31/(
+ Uy +4si + ski
or Thiy, Ty, Tk YOS T o
auvl 8qu 5
—+ S -g—— (E+ i szB sikt = s5
ot ul@xl 81 mS( 1T €U )} (le 21? lk)
€y 6QSk
e ii S‘iB = = 77
m, €kijqsiD St ( )

where 14, 1s the higher order stress tensor given by equation (71). Noting that

a;;:k L [0(;?) +Za(g;szk):| , (78)
we obtain
e g g [ F S
% ey %”;fll —g- nz (El +€5ijutgiB; )1 (Tslk + gpsézk)
- = s (79)

Next, we write

l/ls'

stt j a

2 Oug; 2 [ Ouy; Ou Ou;
= g (5k1qs1+5quy+5z;qsk) ax] = g < a JqS] dsi—~ a £ + sk 8)6) (80)

and note that the momentum equation gives us

81451 8u51 € 1 8Msl 8ps aTs,’l
W*‘Msj%—gl—E(El'i'ElijusiBj):—s ( :

ot 0Ox;  Ox;

(81)

Based on these, the heat flow equation is

8qsk+u_%+7 ausk 7 8us,+28usj SkpsﬁT
o ok 5%y 51 x U5 o 1T 2, o

5k aps 7 8(7;7},/{) 8ps 87—511 5
y -
+2 mg | Ox * 5 Ox; } * [ s ( ox;  Ox; Tatkt 2Ps o
€s 5qsk _ laMsl ( 5 )

——€kijqsibj = + = D5,
msequ j 0t ps O Tik 2p Ik
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which, after some manipulation, gives us the result

Ok % 7 % 7 Oug 2 0uy, S5kp, OT;

g 4 2= g+ T g S
ot “ 0x; 5q Ox; 5q ¢ ox; 5 Ox 4si 2 my Ox
1 07y 7 k 0T, 1 Op;
LA PR R UALACL SR ) B
o7 D, (PsOr1 — Tsik) (st ox  p. 0 ) Tsik
s 5qsk 1 astl 5
——€kij siB': I + = 55 . 82
msﬁkﬂ e T (Tzk 2P lk) (82)

This completes the development of the 13-moment equations.

1.6 Navier-Stokes equations (Week 12)

The 13-moment formulation can be simplified further to obtain the Navier-Stokes (N-
S) equations. The N-S equations rely on simplified versions of the 13-moment stress
tensor and heat flow equations. For convenience, we assume a single neutral species
and ignore external forces. The general equation of mass continuity remains as it is.
The momentum transfer and energy collision integrals vanish for a single species and
thus the momentum and energy equations are:

8u,~ 8%,‘ Bp 87'1'1' _
p(@t +uj3xj)+8x,~+8xj =0 (83)
0 (3 o (3 5 Ou; Og; Ou;
E (Ep)'i‘ula—xl (Ep)+§pa—xl+a—x1+ﬂja—x]—o (84)

The stress and heat flow collision integrals can be estimated by replacing the collision
integral for the distribution function in Maxwell’s equation of change with

5F F-F, K 2
— == LTijciCj‘i'p_ SI qiCi| » (85)
ot o To |2p pPP\5S »p

which allows for the integration of the collision moments. The results are

57—1] Tij

0 o T 86
ot To (86)
i, (87)

E - T0
where 7 is the collisional relaxation time i.e., the time it takes for the system to relax to
the M-B distribution and LTE.

The additional approximation necessary to reach the N-S equations is to assume that
all terms in the stress tensor and heat flow equations that include the stress tensor and
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heat flow vector vanish, with the exception of the collision terms that are divided by a
presumed small number 7. Inspecting equations (76) and (82) then yields:

B Ou; Ou; 2 0uy
Tip = TP (8xj " Ox; 3 0x 61]) (88)
5k 0T
qgi = _5%701?8_)@' (39)

The reader should note that the pressure tensor for the Newtonian fluid is written as

3 Ou; Ou; 2 Ouy,
Fij = poi; M(a—xj+a—xi>+§a—xk5i] (90)

where the coefficient of dynamic viscosity (kg m™" s7!) is
p=aT’. 91)

We have shown that the dynamic viscosity is 1 ~ p7y i.e., proportional to the collisional
relaxation time and pressure. We expect the effect of viscosity to become more signifi-
cant as the collision time increases. Also, we have found that the stress tensor vanishes
under equilibrium conditions where the M-B distribution holds.

We recognize the heat flux vector as conductive flux and note that the coefficient of

heat conduction is -
K& ——Top (92)
2m

i.e., the coefficient is also proportional to pry. We are now ready to rewrite the N-S
momentum and energy equations as

Ou; Ou; dp 0 Ou;  Ou; 2 0uy
o(Frwa) toema P (Ger g sant)] 0
0 (3N, 0 (3)),5,0u_0 (or
o \27 ) " Max \ 2P ) T 2P ox T ax "o

8u,~ 8uj 28uk al/l,'

These equations agree with the classical equations of motion for a Newtonian fluid. It
should be noted that the equations are only valid when 7, is a small number i.e., small
deviations from the M-B distribution.

In terms of global-scale simulations, we can evaluate the importance of the viscosity
and heat conduction by using the Reynolds and Péclet numbers. The Reynolds number
is given by

Re = Ly 95)

v
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where L is the length scale of interest, U is the typical flow speed and

v=" (96)
P

is the coefficient of kinematic viscosity, which has the same unit as the coefficient of
diffusion (m? s™"). The Péclet number is

LU
Pe=— 97)
o
where the thermal diffusivity is
a=—— (98)
PCp

and c,, is the specific heat capacity at constant pressure.

1.7 Neutral momentum equation (Week 12)

As an application of the momentum equation, we consider the neutral bulk flow equa-
tion. This is obtained by summing the individual momentum equations

ZD,";,]" +Y VP—pg=> ) puvu(u,—u,) (99)
n n t

n

where t = i, e refer to ions and electrons while collisions with other neutrals cancel out
and p=)_ p,. Here

ZDI};M = Zﬂnaal;”an(un-vmn
; |:% (pnun)_un%> +;pn (un : V)lln

0
= E (Pu) + ; unV : (pnun) + ; Pn (uﬂ ’ V) uy,

0
= o (pw+ Z V- (pau,u,) (100)
where we used the center of mass velocity
1
u=-3% pu, (101)
p n
and the continuity equation
dpn
a[; +V-(pau,) = 0. (102)
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In order to write the sum over the pressure tensor term, we write the pressure tensor as
P, =P, —p,w,w; (103)

where we used subscript s instead of n to retain generality at this point. Here wy =u;—u
is the diffusion velocity of species s and the thermal velocity with respect to center of
mass flow is ¢; = v;—u so that ¢, = v;—u, = ¢; —w,. Therefore,

Y VP,

VD P pa(u,—u)(u,—u)

= V-P-) V-(pu,u,)+V-(puu). (104)
With these expressions, the neutral momentum equation is
0
5<pu>+v-P+v-<puu>—pg:;anu,ﬂ(u,—un) (105)

Using the equation of mass continuity yields

pll))—l;+v.P—pg =35 ot @) ==Y pv@,—u)  (106)
n ! n t

where P=>" P} and p,vy = pivn.
We approximate the collision term by assuming that the charged particle momentum
equation is given by

e
_Zt, (E+u, x B) = zn:p,um (u,—u,) (107)

where ¢, is particle charge. This means that charged particle motion is controlled by
the Lorentz force only and only collisions with neutrals are taken into account. In other
words, charged particle motion consists of the electric drift

ExB
e =g

disturbed by collisions with the neutral atmosphere. We sum the charged particle mo-
mentum equations (107) over ¢ and replace the collision term in equation (106):

(108)

D
pFl;+V'P—pg = Zt:ntet (E+u, xB) = (Znieiui—neeue> x B. (109)

Thus, the neutral bulk flow momentum equation is
Du

+V-P—pg—jxB=0 110
D pg—J X (110)

p
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where the current density is
ji= Zn,-e,-u,-—neeue (111)

and j x B is the ion drag term. It is interesting that this equation is identical in form to
the momentum equation for fully ionized MHD, despite the fact that the neutral atmo-
sphere does not react to the Lorentz force directly. The influence of the Lorentz force is
nevertheless felt through momentum transfer collisions.

2 Ionospheres

2.1 Chapman layer (Week 3)

Consider the continuity equation for a single ion 7, given by
dl’ll’
— =qg,—an;n 112
§ = dimomine (112)
where n; is the number density of ion i, g; is the production rate, « is the recombination
rate coefficient and n, is the electron density. In photochemical equilibrium for a major

ion (n; = n,), this gives
n=/ L. (113)
«

For example, on Venus g; is the photoionization rate of CO, and « is the rate coefficient
for dissociative recombination of O}.

We shall assume plane parallel geometry and obtain the production rate ¢, at altitude
z and cosine of the solar zenith angle ;= cos x as

dl, 1,
gz e =p " = zsjawns<z>h—ydz (114)

where hv is the photon energy, higher than the ionization potential of the parent species
s, ng 1s the number density of the parent species and I, is the intensity of radiation at
(z, ;). For a single parent species, the production rate is

> n(z’)oydz']

, (115)
7

q”(z’ 'u’) = UV"(Z)FOOV exXp |:_/

where F,.,, is the solar photon flux (m~2 s7!) above the atmosphere. Note that 11 depends
on z along the line of sight according to (e.g., Rees, 1989):

R+z\>
,/=\/1—(FZZ,) sin® y (116)
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where p applies at z. This means that i/ =~ p when x < 75°, which we shall assume
hereafter.
We assume an isothermal atmosphere:

7—2Z
n(z) = n(zp) exp (— T 0) (117)
and write
[ee] I/d / ! _
(2, 1) = 0, 1(2) Fagy, €XP {— / d MZ n(zo)exp (—Z HZO)} (118)
Z
or "
qu(z7 Iu) = UVn(ZO)FooV exp |:_Z;IZO _ Uyn(ZO) exp <_Z;IZO>:| ) (1 19)
If we write iz
A@=exp (-2). (120)
the derivative of the production rate is
y A y H
04, _ ayn(zO)Fwa—{ exp {—MA@} (121)
0z 0z I
v H y H
—A(z)# exp {—MA(@} } (122)

Setting this to zero gives us an expression for the altitude of maximum production:

max v H
exp (Z Z") _ ov@)H (123)
H %
Given that the vertical optical depth is
() = aun(zoHexp (=2 ). (124)

we find that maximum production occurs at the altitude where 7, /p = 1.
Substituting equation (123) into equation (119) gives the maximum production rate

as P
OOI//’L
v\&max, = 125
GG 1) = (125)
where e is Euler’s number. Based on this, equation (113) for a single-valued frequency
gives
F 1/2 1
max — (2 /2 126



which shows the dependency of the peak electron density with solar zenith angle in
the Chapman theory. Furthermore, our final expression for the Chapman production
function can be written as

- 1 -
4.2 1) = Gunrexp {13 e (- ;M)] (127)
where P
M= — 128
qvm oH (128)
is the peak production rate for the overhead sun (¢ = 1) and
exp (ZM_ZO) = o,n(z0)H (129)

where it must be noted that z,, generally depends on frequency.

2.2 Simplified Ohm’s law and the conductivity tensor (Week 13)

The Ohm’s law in atmospheric theory is based on the momentum equations for ions,
electrons and neutrals. A comprehensive derivation with minimum loss of generality
is outlined by Leake et al. (2014). Such a derivation, however, does not easily provide
physical insight to the basic ideas underlying the conductivity tensor. Instead, we sum-
marize the derivation of the simplified Ohm’s law given by Schunk and Nagy (2000)
here and highlight the assumptions involved. We note that this form of the Ohm’s law
is commonly used in almost all solar system planetary ionosphere models.

The vector form of the 13-moment momentum equation (72) for species s in a rotat-
ing frame of a planet is

DY S
) D'; + VP —nse,(E+u, x B)—p(g—2Q x u;—=Q x Q x1)
Lt st Ps
— vy (0, —u, +§ X e 130
§[ PsVs (0 —uy) t Vgt kT, (q Py Qt) (130)

where (2 is the angular rotation vector of the planet the meaning of the rest of the terms
is explained in Section 1.5.3. In order to derive the simplified Ohm’s law, we assume
that the charged particle momentum equations in the direction perpendicular to the local
magnetic field reduce to

eY
nT‘S(EL+uS><B):ZVS,(uS—ut). (131)

One can recognize this as a rather severe assumption, which ignores advection, pressure
gradients, stress, gravity and Coriolis forces. It is also useful to recognize that at the
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limit of no collisions, the charged particle motion here reduces to

ExB
u ;= B’

which is the electric drift, identical for both electrons and ions.
Equation (131) is further simplified by assuming that the neutral density is much
higher than the plasma density and only including ion-neutral collisions:

(132)

CEL A xB)= D v (-u,) = v (u—u,) (133)
ni; p

where we use subscript i to denote an ion and assume that the neutrals have equal ve-
locities. We transform this equation to a frame moving with the neutral atmosphere by
writing w; = u;+u,, which leads to
e; wj

—FE| +—u,xb=u (134)

miv; Vi
where E'| =E | +u, x B is the electric field in the frame moving with the neutrals, w; is
the ion gyrofrequency and b is the magnetic field unit vector. Taking the cross product
with b on the left side and a re-organizing gives

Wi /

ugxb:—%bel—;uu, (135)

which can be substituted back to equation (134) to obtain

2 /
, w; e (E| w; ,
v (1+—= ) = —| —=-=bxE
’L< v? m; \ v U} +

2
v, = mey (V?ij? 1+y;’w;?Elxb). (136)
Similar developments yield the perpendicular electron velocity
W, =—— < Ve g Ve g xb) (137)
LT me, \ 2402t 24w? T

where v, =) v,, where only electron-neutral collisions are included for.
The perpendicular current density is defined as

Jo=ler+ Y Ji=) men) —neeu, + (Zn,-ei —nee> L (138)
i i i
where the last term cancels under charge neutrality. Thus, we have

jL=0rE, —onE, xb (139)
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where the Pedersen and Hall conductivities are

i v,
op = g Oi—5—— +0
— U+ w; v24w?
1
ViWw; Ve,
OH = =) Oiy 570> —
Vi +w; V2 +w?
where )
nse;
o, =
mSVS

We can also write the conductivities as

op

I
— Ik 1R

ke

OH

ki
_Zailﬂc

+o
201 +k2

where k, = w, /vy is the magnetization parameter.
The electron momentum equation in the direction parallel to the magnetic field,

consistent with the assumptions above, is

eneEH = Zpeyet (ut_ue)H .
t

(140)

(141)

(142)

(143)

(144)

(145)

The electron velocity along the magnetic field is typically much faster than ion or neutral

velocities and we can estimate .

W) ~ =

meV,

where we now retain electron-ion collisions i.e.,

! _
v,= E Vei""g Ven
i n

The current density is
Jj = —enou, =

where

n.e*

91 =

Collecting all the terms together, the Ohm’s law

j=0|(E -b)b+5p(b x E x b)— 0y (E' x b),

o Ey

mev,

is

(146)

(147)

(148)

(149)

(150)

which is valid in any coordinate system or our choice, as long as the plasma density is

small compared to the neutral density.
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2.3 Electron transport

Here, we follow the derivation of the suprathermal electron transport equation given by
Stamnes and Rees (1983) since this formulation has significant legacy in Earth and solar
system planetary science. Gombosi (1998) give a more complete version of the general
transport equation for energetic particles. We begin by writing the Boltzmann equation
for suprathermal electrons as

OF OF 0

Eﬂ}l@xi av,(“F) n (151)

where F is the phase space distribution function (m™ s*) and the function 7 captures
the impact of elastic and inelastic collisions with ions and neutrals. The latter function
does not include Coulomb collisions between suprathermal and thermal electrons that
heat the thermal electron population. Instead, we describe this interaction by defining a

frictional dissipative force:
L(E)v;
maty = =, 2N (152)

1%

where the stopping cross section L(E) is a function of the suprathermal electron energy
E and n, is the thermal electron density. Typically, L(E) is given in units of eV c¢m? and
it can be calculated from (Swartz et al., 1971):

L(E) = (153)

337 x 102/ E-E, \**
n0BE04  \ E—0.53E,

where E, = 8.618 x 107°T, is the thermal electron energy in eV. We note that the
quantity n,L(E) has units of eV m™' and describes the deposition of energy per unit
distance along the electron path. Therefore A,, = E/(n.L) is a measure of the length
scale of suprathermal electron energy deposition through Coulomb collisions.
According to the above, the acceleration term in the Boltzmann equation is

0 0

Vi _ 0 Vo
a_vi(aiF) _nea_vl [L(E)_F] = nea—v {L(E)—F?}

Vi 0 0 Vi
I {—30—‘}1[L(E) F} —LE)~ Fa_v,<_>}

v; O OE 'm0 V2
= _neEaE |:L(E) F:| aVi —n _8_E |iL(E)mF‘| (154)
because
9F _
v, = my;.
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Therefore, we can multiply the Boltzmann equation by v/m and write it as

voF v OF 0 V?
YL LR = 155
m Ot mvﬁxinﬁE[()m} (153)
where I1 = (v/m)mn.
We now define the suprathermal electron intensity (m™2 s~ sr' J7!) as
2
I(r,E, Q) t)=—F(t,r,v) (156)
m

where 2 =v/v, which for steady state conditions OF /0t = 0 yields the transport equation

%g—i —ne% [L(E)] =11. (157)
For electrons drifting parallel to the magnetic field, we have v;/v = v||/v = cosa where
« 1s the pitch angle, defined by
tana = = (158)
4l
where v, is the electron velocity perpendicular to the magnetic field. Thus, the electron
transport equation can be written as

dl 0
Md_z —ne%[L(E)I]+H (159)

where 1 = cosa.

2.3.1 Elastic and inelastic interactions

The term II encapsulates most of the important physics in electron transport, includ-
ing elastic scattering, excitation of discrete atomic and molecular transitions, molecular
dissociation and secondary ionization. The general rate expression for these processes
under azimuthal symmetry is

|
H:ZWZZ/EdEm[l dpiaRs; (Ev, Ens i, 12)1 (2, E 2, p112) (160)
s

where s denotes other species, j denotes different processes associated with interactions
involving species s (say, different transitions for excited states), R;; is the redistribution
function that maps electrons with initial energy and direction E; and p, to final energy
and direction E; and ;.
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The redistribution function for the loss of electrons from the initial beam I(z, E, 1)
due to elastic scattering can be written formally as

P(E;pu, 1))

Ry(E.E';p, 1) = 2
T

ns(Z)ges(E)(S(El_E) (161)
where the elastic scattering phase function P,;(E; i1, i) captures the change in direction,
ny(z) is the density of the collision partner s, o.4(E) is the elastic scattering cross section
and 0(E’ —E) is the Kronecker delta function. The energy mapping is a delta function
because there is effectively no energy change in elastic scattering. The loss term due to
elastic scattering is

1
MG =-27 / dE’ / A/ Ry(E  E's 1, 1)1z, E, 1) (162)
P -1

where primed variables refer to the final state of the lost photoelectron. Given that £ and
w are considered fixed for our beam of electrons and the integrals are over the primed
quantities, we may write, by using the delta function for energy mapping:

1 1
I ==Y n(@ou(E)G,E, 5 / dpt' Pu(Es u, 1) (163)
s -1
where we recognize the standard normalization of the phase function

1
5/ dp' Pu(E; p1, 1) = 1, (164)
-1

which gives us
== n(Qou(E),E, 1) (165)

as the final, intuitive expression for the loss of electrons from our beam due to elastic
scattering. Correspondingly, elastic scattering of electrons into our beam (production)
from all other directions is

1 1
HSIZZ”S(Z)Ues(E)E / dp' Poy(E; 1, i)I(z, E, i) (166)
s -1

where the primed quantities denote the initial electron direction and therefore, I(z, E, 1i')
cannot be moved outside of the integral because we wish to evaluate the sum of all
electrons scattered to . from all directions y/. Note that in our convention, primed
quantities always denote electrons that are not a part of the beam at fixed (E, ).
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Next, we consider loss of electrons with (E, i) to (E’, ") due to the excitation of
discrete states with excitation energy W;. Energy conservation requires that E' = E —W;
and we can write the redistribution function as

d( .
Pi(E; 1, 1)
47

where the phase function PJ‘?’ again captures the change in direction and ij(E ) is the
excitation cross section for species s and transition j. It is easy to show that the loss
term due to discrete excitation has the same form as the elastic scattering term:

Iy ==Y n@oENG,E, ). (168)

R(EE" ji, i) = ny(2)o§(E)S(E~E'~W;) (167)

The corresponding production term i.e.,

1 1
mg=> Z ny(2)oe(E+W))5 [ 1 dp'Pu(E+ Wil iDI(z, E+ W, 1) (169)

s J

represents the mapping of electrons from (E +W;, ii') to (E, p).

Secondary ionization leads to a number of complications. We will begin by consid-
ering the loss of (primary) electrons from our beam with (E, ;1) due to secondary ioniza-
tion. This leads to the production of primary electrons with (E’, 1) and the production
of a secondary electron with energy E,,... Energy conservation places the constraint

E=E'+E +1, (170)

where I,,; is the threshold energy for ionization path j. Here, we ignore the ion energies,
assuming that the excess energy of the photon goes entirely to the secondary electron.
Formally, the redistribution function is

[ .
Pi(E;p, 1)
4

where o! ;(E,E") is the differential cross section for reducing the primary electron energy
from E to E’ so that the secondary electron energy is E,.. = E —E’—1,;. Therefore, the
loss function is

Ry (EE" 1) = ny(2)o(E,E") (171)

E—ij
== 3" 3 n@i B /O ol (E,ENdE'. (172)
s

In reality, differential cross sections are measured for secondary electron production (see
Rees, 1989) i.e., they are given as Uﬁ J-(E ,Es.). We note that dE,,. = —dE, with E,. =0
for E' =E—-1,; and E,,. = E—1,; for E’ = 0. Thus, the loss function can be written as

E-Iyj

s J
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where .
oy (E)= / 04 (E, Ege)dEqe (174)
0

is the total ionization cross section and the loss function has the same form as elastic
scattering and excitation of discrete states above.

Following the same philosophy as above, it is possible to write the expression for
the production of electrons with (E, 1) due to secondary ionization by electrons with
(E'=E+E.+1,;,11). This expression is

1 1 e’}
I’ = ZZns(z)E [ | PI(E"; 1/, 1) /E y _agj(E’,E)l(z,E', pAE'dyd . (175)
s j Pi

Finally, we also have to consider the production of secondary electrons with energy
E = E,,. based on secondary ionization by primary electron with E/, which is reduced
to energy E,. The redistribution function is

P(E; 1 gec)

st (El/7 , E, ,u/a yfsec) = A

ny(2)o5,(E,, E) (176)

where it should be noted that the phase function is to a good approximation isotropic
ie., Pi“(E; i, tiseec) = 1. Therefore, we have

1 1 fe'e)
Moo = 5 > n2) / / ol (E'\E)(z,E', 1/ )dEdy. (177)
s =1 J1p;

as the production rate of secondary electrons that are added to our beam with (£, 11). So
far, we have not considered molecular dissociation, which has the same mathematical
form as ionization although it does not result in the production of secondary electrons.
We shall not consider it further here and it is left as an exercise.
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3 Molecular and eddy diffusion

We will use the 5S-moment momentum equation to derive the diffusive equilibrium den-
sity profile for a minor species s. This level of approximation is comparable to the Euler
equations of fluid flow, except for the momentum transfer collision term, and it excludes
the so called thermal diffusion that we will return to later. The starting point is (e.g.,
Schunk and Nagy, 2000):

8U||S
Ps | =g T8V +V P g~ B == o (u—wy), (178)
ts

where p; is the mass density, uy is the species velocity, p, = n,kT; is the partial pressure, g
1s gravity, n, is the species number density, g, is the electric charge, E is the atmospheric
electric field and v, is the momentum transfer collision frequency with species . We
retained some generality in this equation for future use. If there is no magnetic field or
for a neutral species, this equation applies to the vertical (radial) direction. If there is a
magnetic field, the equation holds parallel to the magnetic field for ions.

3.1 Diffusive equilibrium for a neutral species (Week 2)

We write equation (178) with g, = 0 along the radial direction:

aws aws 8ps B
Ps ( It +WSE) + E +psg(l’) = ;psljst (Ws—wy) (179)

where w; is the vertical velocity. We exclude the time derivative and the advection terms
on the left-hand side for now. An explicit justification for this is provided in Section 3.4.
Thus, we have

ops
a—pr +ps8(r) = —%;psvsz (Ws—wy), (180)
which is 9 5
ps psOp
o por -—%Sjpsusmws—wt), (181)

under hydrostatic equilibrium. We divide this equation by p, to write

1 Op; myOlnp X
— 9P T == 2w, - 182
ps Or m Or = Do (wy=wo) (182)
where x, = n,/n and
kT
D, = (183)
MgV



is the coefficient of diffusion based on collisions between species s and ¢.
Using hydrostatic equilibrium, we write equation (182) as

1 0p, 1 3 X
o TH " ZD—(WS wy) (184)

where H; = kT /(m,g). We now assume that the background atmosphere undergoes tur-
bulent motions that act to mix the atmosphere and write

1 Ox;

Wy =wg =K —— (185)
xg Or
where K, is the eddy mixing coefficient. Thus, we write
1 0p, 1
s=wg—Dy| ———+— 186
K (ps or Hs) ( )
where we defined the ‘mean’ diffusion coefficient for species s as
1
— =N (187)
Ds Dst
s

Noting that

10x, 10p, 1
— S — 1
x; Or  pg Or +H (188)

where H is the pressure scale height, we obtain

1 0ps 1 1 op, 1
=—K. | ———+—|-D,( — +— . 189
W “ (ps or H) (ps or HS) (189)
In steady state (diffusive equilibrium), w, = 0 and we can write equation (189) as
1 Op, 1 A
L0 ppy (LA (190)
ps Or H, H

where A, =K, /Dy i.e.,

Todr 1 A
Pu(r) = p(ro)exp {— / HrA (§+ﬁ‘>] (191)

In other words, if K, >> D;, A; >> 1 and the partial pressure of species s decreases
with altitude based on the pressure scale height of the atmosphere. If, on the other hand,
K., << D,, A; << 1 and the partial pressure of species s decreases with altitude based
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on its own scale height H;. The homopause, where D; = K, by definition, is in the
transition regime.

A common form of the diffusion equation is given in terms of the mixing ratio x;.
This is obtained from equation (182) by using equation (188), and it is given by

O0x; OJln
ot (xs— ;) P_ szx, (192)
ts
We can also incorporate eddy and thermal diffusion here by writing
Ox; Oln P, a5k T _
1+A) —+ | x—— s 193
( ) or (X p ) or T or Zx x Dy (193)

where «; is the thermal diffusion coefficient for species s. Assuming that w, = 0, we
obtain the diffusion velocity of species s as (e.g., Chamberlain and Hunten, 1987):

10n, 1 1+4«,0T 10n, 1 10T
=-D; (nc 8r+I-_IS+ T E) +K,, (n—SE+E+TE). (194)

Equation (183) gives a formula for the diffusion coefficient but in most applications,
tabulated values are used (e.g., Marrero and Mason, 1972). In the absence of readily
available values for neutral species, the equation

152108 [/ 1 1
Dy=—22 " ()T em®s, (195)
n M, M,

where 7 is the total number density of the atmosphere in cm™ and M is the molecular
weight in amu, is a reasonable approximation.

3.2 Major ion diffusive equilibrium, no magnetic field (Week 4)

Consider a single major ion in charge balance, so that the electron density n, = n; =n,
where n,, is referred to as the plasma density. We write the steady state ion momentum
equation as

Vpi—mieE | — pig) = —pivie =) = Y _ piv (0w, (196)

which applies parallel to the magnetic field lines or in the vertical direction. The parallel
current density is

§i=_nigg —neeuy (197)
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where g; is ion charge. Assuming zero current conditions for a major ion implies that
(u;—u,)| = 0 and the major ion equation becomes

V| pi—nieE — pig| = —piVin (Ui—un)H, (198)

where we further assumed that collisions with one neutral species n dominate.

The polarization electric field is obtained from the electron momentum equation
under the zero current assumption and ignoring any terms including the small electron
mass m,. Thus, it is given by

1
eEH = —n—V”pe. (199)
Substituting this into equation (198) gives:
V) (Pi+pe)— pig) = —pivin (Wi —Wy,) - (200)

In diffusive equilibrium and in the absence of a magnetic field, we have

%(pi+pe)+pig=0, (201)
which we can write as L8 g
ik, E(HikTp)'i' KT, =0 (202)
where the plasma temperature is
7=t (203)

and T;, are the ion and electron temperatures, respectively. Thus,

1i(r) = ny(ro) exp (— r;") (204)

p

is the diffusive equilibrium density profile for a major ion, provided that 7, and g are
constant with altitude. The plasma scale height is

3 2kT,
- m;g ’

H, (205)

which is equivalent to twice the scale height of a neutral species with the same mass as
the major ion in collision-dominated media for which 7, = T; = T,,.
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3.3 Major ion diffusion with magnetic field

We make the same assumptions as in the last section, up to equation (200):

V|| (Pitpe)— Pi8|| = —PiVin (u;— lln)|| .

Note that we ignore electrodynamic drift and parallel currents. We also assume that the
ions are tied to the field lines i.e., magnetization

.B
k=32 S~ (206)

m;Viy,

which means that the ion gyrofrequency is much larger than the ion-neutral collision
frequency. We do not consider ion-ion collisions because the equations here are valid
for a single major ion only.

We rewrite the equation above as

mig|

1 1
i — Uy =_2Di —V ,-+—V T— 207
(ll u )H n; Hi’l Tp I4p 2kTp ( )
where T, is the plasma temperature and the diffusion coefficient is
kT,
D; = —~. (208)
miVip

Cast in magnetic dipole coordinates, the gradient operator is (Swisdak, 2006, and Sec-

tion 6.1)
0 of o Of 1 of
=q5 - T ey L 2
v/ qr38q+psin398p+e¢rsin98¢’ (209

which means that

0 of
Vif=q—==. 210
If=4573 » (210)
where for a south to north (Earth-style) centered dipole
2cost in®
q:—( Cgs e,+Slf51 eg) @11)
With this, the major ion drift equation is
1don;, 1 60T, mg
i—Upg)q=-2D; | ——= —+——=—-L-""%q. 212
(u “ q)q {ni r*dq T,r Oq 2kTJ 212)

We extract the radial component of this equation by taking the dot product with e,,

noting that

q.er:_zcgse (213)
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and thus we have

20059:2D 160n; 1007, mg,|2cosf

bttty o2 _op, | =2, 2 O 214
Hir ™ thng 5 nr3dq T,r30q 2kT,| 6 14)
where 5 cosd

iy === (215)

is the radial component of the ion velocity.
Using coordinate transformations for the dipole coordinate system, we can write

o _0or _ 2r300502

== 216
0q Ordq 02 Or (216)
Also, gravity along the magnetic field line is
2gcosf
g0=—geq= . @17)

Finally, zonal winds do not have a component along the dipole magnetic field lines and
vertical winds are much slower than meridional winds. Based on this, we assume that

inf
un:unegﬁunq:un-q:—%un. (218)
Now, the expression for the ion drift becomes
uir_2cos€sin9un=_ i4cos29 1 8n[+i%+ m;g 219)

5 82 |mor T, dr 2kT,|

We move to define the magnetic dip angle / as the angle between the magnetic field
vector and the meridional unit vector. Thus, we have

sin] = qxe(;:qrz—zcgse (220)
cosl = q-e9=q9=—¥ (221)

and with these definitions,
u;, = u, cosIsinl —2D;sin> I l%+i%+% (222)

n; or T, Or 2kT,

is a basic form of the ion drift equation.
It should be noted that equation (222) ignores ion motion perpendicular to the field
lines, assumes zero field-aligned currents and does not include electrodynamic drift. As
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an example of the latter, we may consider the eastward equatorial electric field in the
dayside ionosphere of the Earth. This electric field is generated by a wind dynamo in
the E region and communicated along the field lines to the F region where k; >> 1. The
ion drift based on this field has the form

ExB

Vid = 3 (223)

For an eastward electric field, the component in the vertical direction is
E
Ujgr = 3 cosl/, (224)

leading to an equatorial F region drift equation given by

E 1om 10T, m,
u;, = — cosI+u,cosIsinl —2D;sin’ [ S, Y TS
B n; Or T, Or 2kT,

(225)

The dynamo field thus produces upwelling around the equator, which is balanced by
downwelling at mid-latitudes. This effect that modifies the equatorial electron density
profiles is known as the Appleton fountain.

3.4 Generalized diffusion (Week 13)
3.4.1 The diffusion approximation

The purpose of this section is to examine the nature of the diffusion approximation and
related equations above in some more detail and derive an expression that can be solved
to obtain the different species velocities. We start from the continuity equation (178) in
the radial direction for an unmagnetized atmosphere, for convenience with K, = 0:

aWs aws aps
Ps (E +wy or ) + or psg(r)—nsesE =— %S: PsVst (Ws=wy). (226)

We now use the so-called diffusion approximation i.e., write the species velocities as
w, =w+w, where the center of mass (bulk flow) velocity is

1
w=—>  pw (227)
P
where the sum is over all species k. The definition of bulk flow velocity means that

> piow =0. (228)
k
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Substituting the expression for wy to the momentum equation yields

0 ow ow ow.| Ops
Ds E(w+w)+w—+w—+w +

0 S or or or
~pg(=ne;E == piy (w,=w)). (229)
ts
where we excluded terms second order in w/. Note that the momentum equation for
bulk flow is 5 5 5
w w p
p(at War) 5, P8 (230)

and thus we can write the diffusion equation as

ps Op aps+ ( ow' aw>

“oor or Yor "oy

—n,e E :—Zpsl/st (w;—w;). (231)
ts
Writing the species pressure gradient in terms of x; and p gives:

O0x; O(In p) ngesE  p aw
+(x,-Z + 232
or (x‘ p) or p 8r v(()r gxx, (232)
Now, we can ignore the species advection terms as long as
Din m Dgng m
stts 1 _ _s) s s ) 2
S (1-22) | >> [ S5 Sl (233)

where we multiplied the diffusion equation by nD; and used the pressure scale height H
as the vertical scale length.
For example, we consider a situation for which m, > m. Then the above condition is
1> >> :
—— —w w
m kT c2

(234)

where c = kT /my. If w =0 (static atmosphere), this condition is always satisfied for
my > m. The reverse condition for m; < m is also always satisfied. Now, let us assume

that w = ¢,. In this case,
/

m w.
—1>> =,
m Cys

This means that diffusion conditions is only violated if the perturbation velocity w’, >
Css = W, a situation that is obviously impossible for a heavier minor species. Following
the same logic, we can set w = ¢, for bulk flow and note that the condition is only
violated if w/, > ¢,, another impossible situation. We conclude that the standard diffusion

equation
Ox, Jd(In p) n,e E
or " <x ;) or Zx .

is valid for a wide variety of situations, including non-zero bulk flow.

(235)
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3.4.2 Solving for the diffusion velocities

We denote the left-hand side of equation (235) as d, so that we can write

/

vaxt i (w; —wﬁv) (236)

ts SN

where N is pre-selected as the ‘remainder’ species. Given the condition of zero diffusive
mass flux, we have

Wy =—— Zpkwk =-— (m me ) (237)

ts

which we can substitute to the equation above:

N-1 N-1
XXi  XeXy MX XeX; XX,
dy=— !+ 1+ '+ - ! 238
Z Dy;  Dgy < meN> s Z |:<Dst mNDsN):| i (238)
JFs J ts
or
d, = Mgw,
Ml xx: xx mx
M, = - STV 1 2 ) g 239
J %j D, D ( meN) p (239)

XXt My XXy
+Z K mNDsN)] (1-64), (240)

s Dy

which we can invert to solve for w’.

3.5 Diffusion-limited escape (Week 13)

Here, we consider some interesting limits of the generalized diffusion equation that are
used to describe the escape of minor species from planetary atmospheres. Consider a
situation in which a light minor species is escaping in the background of a stationary
heavier major species. In this case, m; < m, w =0 and we set w; ~ 0. In this case, we
can write the flux of species s in hydrostatic equilibrium as

nD m Ox
= pw, = D50 1—J)— D+ K.) 2" 241
fomnn =22 (120 - (D +K) 5 241)
where the diffusion-limited flux is defined as (Hunten, 1973)
nyD m
= 1——S). 242
fo="2 (1= 42)
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Thus, we have an expression for the gradient of the volume mixing ratio:

Ox; 1

or ~ n(D.+ K. (fL=19- (243)
In other words, if f; < f;, the mixing ratio gradient is positive, as expected for a lighter
minor species. When f; = f;, the mixing ratio of the species is constant with altitude
and the upward flux reaches a maximum. For f; > f;, the mixing ratio gradient be-
comes negative and the upward flux decreases until it settles back to f; = f;. Note that
the diffusion limit is an upper limit for the escape of the light minor species from an
atmosphere dominated by stationary heavy species.

3.6 Cross-over mass (Week 14)

The concept of the cross-over mass was developed to describe the behavior of a heavier
minor species in an atmosphere where the dominant lighter species is undergoing rapid
escape such as hydrodynamic escape (although the latter is not required). In this case,
we consider a 2-species system with m, < m; and non-zero bulk flow enabled originally
by the escape of species 1. At altitudes of interest, we assume that K, = 0. If the
atmosphere remains close to hydrostatic equilibrium (layers below the sonic point), we
can write the diffusion equation as

1 Ox, mg  mpg 1 X1
L = 2__24 -
X2 or kT kT l’lD12 f] X2f2
1 X xX18
- e ) Sy —my) 28 244
Do <f1 x2f2> (my—my) T (244)

where m = x;m; +x,m;, x,—1 =—x; and T = T} = T,. We start by considering a situation
in which the mixing ratio gradient for species 2 vanishes. This gives

X nDyx, 8
=—fi|1- . 245
V) x1f1|: KT, ] (245)
In other words, if the mass of the heavier species is
kT
my, < me=m;+ S (246)

nDyx,g’
where m, is the cross-over mass (Hunten et al., 1987), f> > 0 and the heavier species
undergoes escape due to drag forces from the escaping lighter species 1. In this case,
the escape flux of species 2 is given by

H=22f <m _mz) (247)
X1

me—ni

If, on the other hand, m, > m., f, < 0 and the mixing ratio begins to decrease with
altitude, as expected for a heavier minor species in diffusive equilibrium. The limiting
case is m, = m, for which f, =0.
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4 Energy balance

4.1 Exospheric temperature (Week 1)

Assume that the thermosphere is heated from above by solar EUV flux F, and that the
globally averaged effective heat flux Fg is

Fp = }LEFOO (248)

where € is the heating efficiency parameter (more on that later). Assume that heating
is balanced by downward heat conduction to the mesopause where the energy is reradi-
ated to space in the infrared. Then, the outgoing flux at the mesopause is equal to the
downward heat flux by conduction:

Fp=r— (249)
dr
where & is the coefficient of heat conduction. This coefficient is given by
Kk =AT® (250)

where A [W m™' K™¢*D] and s are constants that depend on the relevant atmospheric
constituents. Gombosi (1994) gives the following expression based on the mean free
path method:

K= 2k iTl/2

oV mm
where k is the Boltzmann constant, o is the total cross section of molecular collisions
and m is the molecular weight of the constituent. In practical applications, however, we
use tabulated values of A and s for different species rather than this expression.
We use hydrostatic equilibrium to write

(251)

d
dr=-HZL (252)
p
and thus equation (249) is
TH,d )
Fo 08P __apsar (253)
Iy p
where we also assumed that T
H=—H, (254)
Ty

where 7 and H, are the temperature and pressure scale height at the mesopause. We
now proceed to integrate this equation from the mesopause roughly to the level of the

EUYV heating peak:

Pdp’ ATy [T

Fe | E=-20 / T5dT (255)
Po p HO T

0
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where we labeled the exospheric temperature as 7.,,. Thus, we obtain

P ATO . ]
Fgeln| — | =—— (T, - T} (256)
£ (Po) sHy ( 0)
and finally, the result is
FruvH,
T8 =T+ B0 (P0) (257)
4AT, p

The obvious trouble with this equation is that we do not have a priori knowledge of the
appropriate value of p. One solution is to write (Chamberlain and Hunten, 1987)

Po T (258)
P <pu>
where 7, is the optical depth (for global average) at the mesopause to radiation in the
~20~100 nm band and the cosine of the solar zenith angle < py >=1/2.

4.2 Energy-limited escape (Week 13)

The derivation of the exospheric temperature above is based on a simple balance be-
tween net heating, downward conduction and re-radiation of the absorbed energy back
to space at the mesopause. An alternative balance that has gained popularity among
exoplanet modelers is the so-called energy-limited escape. We write the Navier-Stokes
energy equation in the radial direction as (e.g., Koskinen et al., 2013b)

0 10 1 0 10 0

—(pe,T)+—— (FPpe,Tw) = pOr—p— — (Pw) + = — | Pr=— | +® 259

ot (perT) r2 or (r pe W) POr P2 ar (r W) r2 or (r K@r) v (259)
where w is the radial bulk flow speed, Qg is the net radiative heating term (sum of
heating and cooling), « is the coefficient of heat conduction and ®y is the viscous dissi-
pation functional. By using the continuity and momentum equations, we can write this
equation in steady state as:

% {Fp (cpT + %wz +<bg>

where the radial mass flux constant F, = pwr? and ¢, is the gravitational potential.
We assume that conduction is negligible (x = 0) and ignore the viscous dissipation
functional. Integrating equation (260) from r to infinity then leads to

= pr2QR+§r (r%%) +r2dy, (260)

1
-F, (cpTO— —w2+¢go> = eFEr%: (261)

2
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where we assumed that 7 — 0 at infinity, w — 0 at ry and ¢, vanishes at infinity. Fur-
thermore, we can define the product

€Fpry = / b r*a(r)g(r)dr (262)

o

where Fg is the effective (radiative) heat flux at the top of the atmosphere, 7 is the effec-
tive peak altitude of the heating function, € is the column-averaged heating efficiency, «
is the altitude-dependent heating efficiency and ¢ is the altitude-dependent total energy
deposition rate.

We can divide the potential term in quation (261) by the specific enthalpy term for

monatomic gas
[P0l _ 2m|dgo| _ 2
= =ZX 263
c,Ty  5kIp 5" (263)

where X is the thermal escape parameter. In other words, as long as Xy > 5/2 at ry,
the specific enthalpy term is negligible, a condition that is almost always satisfied at the
base of the thermosphere. In most cases, the kinetic energy flux can also be ignored,
and this gives

Fo= er%FE2
g |¢g0| .

The standard formula for energy-limited global mass loss is obtained by setting ¢4 =
—GM,/ry and assuming that Fr = Fxyy /4 for a global average i.e.,

(264)

2

ME =47TFP= GM
P

(265)
where Fyyy is the stellar XUV flux at the top of the atmosphere, R, is the radius of the
planet and M, is the mass of the planet.

It should be noted that this equation implies a balance between the net radiative
heating term in the energy equation and the thermal (adiabatic) expansion term

9, _ 9 2 »0p
pa (r w) =5 (pwr )+wr a (266)
where the second term on the right-hand side
wrzg =— w% (pwzrz) +wr2% (267)

is obtained from the steady-state radial momentum equation.
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5 Numerical methods

5.1 Photochemical models (Week 14)

Photochemical models solve the continuity equations for multiple species, typically in-
cluding chemical reactions and diffusion. The solution techniques are very different
from chemical equilibrium models and we will briefly cover some basic principles here.
We will follow the solution used by Lavvas et al. (2008) in their model of neutral photo-
chemistry for Titan’s atmosphere. In order to highlight the usual assumptions regarding
diffusion in neutral photochemical models, we start from equation (193) above:

K.\ Ox, Olnp agx, OT
(1+Fs> ar+<xs ;) ar T E szx,

Assuming a stationary background (w; = 0), we multiply equation (193) by nD; and
re-organize to get the flux of species s

nD; my HOT O0x;
=2 (1-=—ar= = | x,—n(D,+K..) = 2
fs H ( m CYTT ) )xs l’l( s T zz) or ( 68)
where we also replaced the pressure gradient with
Olnp 1
=——. 269
or H (269)
Based on this, the continuity equation in the absence of vertical advection is
on, 1o, ,
- =——— o)+ Py— L 270
Ot r? Or (r f) 279)

where we included the chemical production (F;) and loss (L) rates. The production
rate can include chemical reactions, photo-ionization, photolysis and impact ioniza-
tion/dissociation. Note, however, that these equations ignore electric and magnetic
fields, so the diffusion formulation is not suitable for models of the ionosphere. The
loss term can include chemical reactions, condensation and surface processes.

We can write the divergence of flux as
10 ( 2 ) )4 0 fs 2

Hap — /s (271)

r2 Or

where
Ofs _0fs0p _ _p s
or  Opor HOop’

(272)

Expressing the flux as
Ox;

s:Cs s+Cs
J 1sX 281)

(273)
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where

pD; my p OT
s(p,T) = -—+tar—— 274
Ci(p,T) kTH( - TTa) (274)
e
T) = (Dy+K,)—— 27
CZS(pa ) ( s zz) kTHv ( 5)
we can further write the divergence of flux as

1 8 2 axS azxs
- — ) = DXy +Doyy— + D3g—— 276
rzar(rf) 15X, 28p 38p2 (276)

where
aC; 2
D, = £58-Z¢, (277)
Hop r
P 8C25 2C2s
Dy, = —|(Ci+——)~- 278
! o < st 5, ) . (278)
Dy = £Cu. (279)
We note that the time derivative of number density at a fixed pressure p is

\ \) A A T s

Ons _ O(nx;) _ n(?x _Xp oT n@x (280)

ot Ot ot kT2 ot~ Ot

for constant temperature over time. We may now write the continuity equation for
species s at pressure level n as
0xs7n a-xs,n azxs n

ot = s nXsn + bx,n 8p + Csn 8p2 + us,n(xn) - Vs,n(xn) (281)

where we highlight that the values for a, b, c depend on both the species and the pressure
level, and the production and loss rates depend on the mixing ratios of all the species at
level n. Here, the variables are

Dlsn D2sn D3Sn Psn Lsn
asn = —, bs,n: y Csn = y Usn = n Vsn = P (282)

n, n, n, n ’ n

where the subscripts should not be confused with the tensor summation convention.
To complete the continuity equation at level n, we use second order central finite
difference approximation to express the partial derivatives:

0Xs

ot

us,n(xn) - vs,n(xn) + as,nxs.,n + bs,n (dn—l-xs,n—l + dnxs,n + dn+1xs,n+l )

+cs,n (en—lxs,n—l + enxs,n + en+1xs,n+l) . (283)
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‘We can write this as

Ox;
atn = Qs,n (Xn) + aS,n(pna Tn)xs,n + Ws,n(xs,n—l 7xs,n7xs,n+l s Pns Tn) (284)
where
Wsn = (dn—l bs,n téu-1 Cs.n )xs,n—l + (dnbs,n + encs,n)xs,n + (dn+1 bs,n +ént1 Cs.,n)xs,n+1
= Oup-1Xsp-1T ﬂs,nxs,n + Vs 1 Xs,n+1 (285)

with the first derivative terms

d = - Pn+1 = DPn
" (pn_pn—l)(pn+l_pn—l)
dn = _(dn+l +d —1)
dui = L (286)

(pn+l _pn) (pn+1 _pn—l)

and the second derivative terms

2
el =
: (pn_pn—l)(pn+l _pn—l)
2
e, = —
(pn+l _pn) (pn _pn—l)
2
e, . (287)
+ (pn+l _pn) (pn+l _pn—l)
Finally, the general form of the continuity equation is
O0Xs
% = Hs,n(t; X3 Xs.n—15Xs,ny Xs,n+15 Pny Tn) (288)

At this point it is a good idea to examine the variable and array dependencies of this
equation. Through the production and loss rates, the mixing ratio of species s depends
on the abundances of all the other species at level n, often in a complex, non-linear
manner. The transport terms, on the other hand, depend on the species s mixing ratios
on adjacent levels while there is no direct dependency on the other species at adjacent
levels. We may therefore expect the numerical solution of this equation to constitute a
complex matrix inversion problem.

The presence of the transport terms forces us to set spatial boundary conditions that
would not be required in the absence of the mixing ratio derivatives. The boundary
conditions are handled by introducing imaginary points above the upper boundary and
below the lower boundary. For Titan, Lavvas et al. (2008) assumed zero gradient in the
mixing ratio at the boundary, which for second order central differences gives

doxso+dixg1 +daxg =0 — doxgo = —d1 X1 —drxs2, (289)
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which can be used to eliminate dyx,, from the continuity equation. At the upper bound-
ary, they assumed zero second derivative for the mixing ratio x;.

We note that the function H; , encapsulates processes with wildly different timescales
and a straightforward solution is not possible. For this reason, equation (288) is a ‘stiff’
equation. This equation is often solved by using the backward Euler technique with
Newton-Raphson iteration. Consider, for example,

x'(1) = f[t,x(1)]. (290)
The forward Euler step for this equation would be
X(t+h)=x(t)+hf[t,x(1)] (291)

which usually leads to instabilities in photochemical models. Instead, the backward
Euler step is
X(t+h)=x(@)+hf[t+h,x(t+h)]. (292)

If we call k = x( +h)—x(¢), it is clear that we need to solve the equation

k = hf(t + h,x+Kk) (293)
to take the backward Euler step.
We package the problem as
G(k) =k—hf(t+h,x+k)=0. (294)
For this, the Newton step is
G(k+Ak)=0
— G(k)+VG(K)Ak =0
— VG(K)Ak = -G(Kk). (295)
Here
VGK) =V k-t +h,x+K)] =1-hV,f(t +h,x+k) (296)
where

f(t+h,x+K) =~ f(t +h,x)+ KV, f(t+h,x+K)

is consistent with the backward Euler step. Thus, the Newton step is
[(I-AVf(t+h,x+Kk)] Ak = hf(t + h,x+Kk) - K, (297)

which we invert to obtain Ak in order to update k. The initial value of k can be taken
to be zero or obtained by taking the forward Euler step.
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Let us now apply this theory to the continuity equation in photochemical models.
We may write

xs.n(tm+l ) = xs,n(tm) + hmHs,n(th s Xim+15 Xm+1 ,s,n—1 s Xm+1 5,09 Xm+1,s.n+1 ) (298)
In this case, the function G is
G= xs,n(tm+1) _-xs,n(tm) - hmHv,n(th s X105 Xm+1,s,n—15 Xm+1,5,n5 xm+1,s,n+1) =0 (299)

and we identify
ks,n = xs,n(tm+1 ) _-xs.,n(tm) (300)

so that x,,,; = X,, + k. Discarding transport terms would allow us to derive separate
equations for each pressure level:

G:ks_hmHs(tm+l;Xm+l) =0. (301)

Application of the Newton step i.e., equation (297), then yields

((5‘, j —hm%> Akj = hyH (tyir; Xme15) — ks = =€ (302)
J
where Einstein summation convention is assumed.

Including the transport terms complicates the solution because it relates the equa-
tions for different levels to the two adjacent levels and makes it tempting to consider
operator-splitting. This, however, is not used in typical photochemical models and in-
stead Lavvas et al. (2008) include the transport terms in the Newton iteration. Some
mental gymnastics are required to follow this procedure. The main difference is that H
is a function of the mixing ratio x; at three different pressure levels through the numeri-
cal first and second derivative. Therefore, we need to write

OH,
= i n10s/ 303
8XJ"”_1 Oé]7 1Vsj ( )
OH,, 90y
Friie aj7n55j+ﬁj7n5sj_a_§ (304)
Jn J
OH.
LI 305
a-xj,n+1 Yjn+10sj ( )

to account for the total derivative of H;, in VH. Therefore, the Newton step now gives

Oy 00
hmOzs,n_l(ssjAij,_l +h,, (h—/ +Clj7n55j+5j7n(ssj — %) Akjﬁ +’yj7n+15sjAkj =—€,, (306)
m j

which can be written as block tridiagonal matrix and inverted to obtain Ak,,.
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6 Supporting topics

6.1 Magnetic dipole coordinates

Magnetic dipole coordinates p and g are given by (e.g., Swisdak, 2006):

r

= 307

p sin® 6 (307)
cosf

¢ = — (308)

where r is radial distance, 6 is co-latitude, p is constant along magnetic field lines and
q is constant in the direction perpendicular to the magnetic field lines. The reader may
wonder where these expressions come from. The starting point is the dipole magnetic
field centered at the planet:

B = 201 (3 cos fe, +sin ey) (309)
T
where iy = 47 x 1077 N A~ is the permeability of free space and iy, is the magnetic
moment in units of A m?. An alternative expression for magnetic moment m is
m="12 1y, (310)
4
which has units of T m?®. Finally, the magnitude of the dipole field is
Ho [m

B = 1) 311
47 r3 (1D

= V1+3cos?6. (312)

Now, consider a path length element parallel to the magnetic field i.e.,
dsxB=0. (313)

Using spherical polar coordinates and setting d¢ = 0 gives

2
Bydr = B, rdr — g = rdo g = ﬂ

=— 314
Br Bg - r u ( )

where we used the radial and meridional components of the magnetic field from above
and substituted u = sinf. Integrating from the equator where u# = 1 to some radial dis-
tance r leads to

In (L> = 2lnu, 315)

Teq
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which gives us the magnetic field line equation:
7= Teqsin’ (316)

where p = r is the equatorial radius corresponding to a given field line. Thus p is
constant along the magnetic field line. This coordinate is related to the so-called L value
of a given field line by

p=LRy (317)

where R, is an equatorial reference radius.
Similarly, we consider a path length element perpendicular to the field line i.e.,

ds-B =B,dr+Byrdd =0, (318)
which leads to d d(cost)
r cos
g 319
r 2cosf (319)

and gives the dipole coordinate g as a constant of integration
gr* =cosf. (320)
For example, at the poles cosf = 1 and ¢ = 1/r*. Thus, the coordinate ¢ is constant in

the direction perpendicular to the magnetic field line.

6.2 Hydromagnetic theorem

Consider a fully ionized plasma where Hall currents are negligible, for example the
solar wind. The Ohm’s law for the current density can be written as

j=0.(E+uxB) (321)
where :
fe= — = m”2 (322)
o, n.e

is the plasma resistivity i.e, the inverse of conductivity, and v, is the Coulomb collision
frequency. The velocity is
mgngu
u= M (323)
p
where p is total mass density and the sum is over all species s with number density n;

and mass my. For a single ion plasma, we have

u~u (324)
W ~u—-I (325)
en,



because of the small electron mass.
Taking the curl of equation (321), assuming constant 7), and using Faraday’s and
Ampere’s laws (without the displacement current) gives

_a_B+V><(u><B)=&VX(VXB). (326)
Ot Ho

We use the Levi-Civita symbol (see Section 6.4) to write the cross product:

0 (OB
Vx(VxB)], =€emicin=—| =] 327
An even permutation of the Levi-Civita symbol gives
0 (0B
\V4 V xB =CmnCijka— \ 5 328

and therefore, we have

0 (OB
n J

0 (0B, _ 0 (0B,
Ox, \ Ox,, Ox, \ Ox,

i OB, _ 0 (0B,
0x,, \ Ox, ox, \ 0x,

Vx(VxB)=V(V-B)-V’B=-V"B. (330)
Using this vector identity, we obtain the induction equation

B v uxB)+ v, (331)
Ho

(329)

or

ot

If the magnetic Reynold’s number
R, = poo.ulg >> 1, (332)

where L is the length scale of spatial variations within the magnetic field, the second
term on the right-hand side of the induction equation (magnetic diffusion) can be ne-
glected and we obtain the hydromagnetic theorem:

OB
E—VX(UXB). (333)
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This is equivalent to zero electric field in the rest frame of the plasma (i.e., infinite
conductivity):

E+uxB=0, (334)
which implies that ions and electrons drift with the same velocity
E xB
u=— (335)
B

perpendicular to both the electric and magnetic fields and that the magnetic field is
frozen-in to the plasma.

6.3 Simple magnetopause boundary

The magnetopause is a tangential discontinuity where the pressure of the solar-wind
magnetosheath plasma balances the pressure of the Earth’s magnetosphere, the latter
being dominated by the pressure of the Earth geomagnetic field. More specifically,
around the nose of the magnetopause boundary (Baumjohann and Treumann, 1997):

1 2
Klgei, (M- V) = 3 (nxB,) (336)
Ho
where n is a unit vector normal to the magnetopause boundary, ny, is the solar wind
plasma density, vy, is the solar wind velocity, B, is the Earth’s magnetic field strength,
m,, is proton mass and « is an efficiency factor that accounts for non-specular reflection
of the solar wind plasma. At the stagnation point (nose) where solar wind velocity is
parallel to n, we can write
BZ
_P
20
Assuming that the magnetic field at the stagnation point can be represented by a dis-
torted dipole field, we obtain

2 _
swoT

(337)

KRg, M,V

, _ KB} &
sw 6
2/’60Rmp

(338)

Mg,V

where R,,, is the stand-off distance and the parameter K accounts for non-specular re-
flection and deviation from the dipole configuration driven by the magnetopause current.
Based on this, we obtain

KB2 /e
R, =|—"2Et R 339

() ® o
where m,, is proton mass and Bg is the Earth’s surface magnetic field strength. With

K =2, we obtain R,,, ~ 10 Rg.
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On the magnetopause flanks, the normal component of the solar wind ram pressure
is small and solar wind thermal pressure dominates. Thus, we have

KBZ 1/6
Rupr=(=—L~] Reg, 340
vt ( 2#0’7nswkTsw ) F ( )

where v = 5/3 and T, is the temperature of the solar wind magnetosheath plasma. This
expression yields values about 1.8 times larger then R,,, and gives ~18 Ry as the extent
of the magnetopause on the flanks. These estimates deviate somewhat from real values
(e.g., ~14 Rg for the magnetopause extent on the flanks), but they are good to an order
of magnitude and provide useful guidance.

6.4 Levi-Civita symbol
6.4.1 Rank2

The Levi-Civita symbol is a tensor of a rank set to match the dimensions of a given
problem. It is helpful to consider the rank 2 case first:

1 for (ij) =(1,2)
—1 for (i,j) = (2,1)
0 fori=j. (341)

Eij

We now wish to write the product of two symbols ¢;¢,,, by using Kronecker delta sym-
bols. We recognize that any combination where i = m and j = n at the same time must
give 1 (product of the same sign) while for this case, it is also clear that i #n and j # m.
The opposite is true for the (1,2)(2,1) combination. Therefore,

€ij€mn = OimO jn— Oin0 jm- (342)
For example, we can set i = m to obtain
€ij€in = 5ii5jn - 5in5ji (343)
where repeated indices imply a sum. Thus,
€ij€in =20 —01,0;1 = 02,020 =0 . (344)

Finally, we obtain
€j€ij=0j=2 (345)

by setting j =n.
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6.4.2 Rank3

The Levi-Civita symbol of rank 3 is

€ije. = 0 for any two indices equal
= 1 for even permutations of (1,2,3)
= —1 for odd permutations of (1,2,3) (346)

where a permutation refers to the swap of any two indices and even permutation is
obtained by an even number of swaps. By using the same logic as we did for symbols
of rank 2, the product of two symbols of rank 3 is

€ijk€imn = (Sil 5jm6kn + 5im6jn5kl + 5in6jl 5km
5im6jl5kn - 5i15jn5km - 5in5jm6kl . (347)

Setting i = [ then gives
€ijk€imn = d/’mé‘kn - djné‘km (348)

where repeated indices again indicate a sum. The symbol is useful for writing operations
involving cross products. It is easy to demonstrate that

(axb); =¢jra;by (349)

is the ith component of the cross product of two vectors.
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