

PTYS544 Physics of the High Atmosphere

Basic details

Cocation / Time

- Tuesday & Thursday, 12:30 13:45
- Kuiper Space Science (KSS)

Instructor

- Tommi Koskinen, KSS 421
- tommik@email.arizona.edu

Venus

Thermosphere: EUV and CO₂ near-IR heating.

No stratospheric temperature inversion.

Troposphere: Greenhouse effect due to a thick CO₂ atmosphere, convective equilibrium.

Equatorial temperature slice from the VTGCM model (Bougher et al. 2013)

Terrestrial planet IR spectra

From Cockell et al. (2009)

Mean neutral density profiles (Hedin+1983)

Venus: Neutral photochemistry

Photolysis of CO₂ in the stratosphere (above ~70 km):

 $CO_2 + h\nu \rightarrow CO + O$ $\lambda < 169 \text{ nm}$

The reverse reaction is spinforbidden and thus extremely slow:

 $CO + O + M \rightarrow CO_2 + M$

Instead, we might expect:

 $0 + 0 + M \rightarrow O_2 + M$ $0 + Cl0 \rightarrow Cl + O_2$ $0 + 0H \rightarrow O_2 + H$

Should end up with a lot of CO, O_2 and O with [CO]/[O_2] = 2.

Yung and Demore (1982):

 $Cl + CO + M \rightarrow ClCO + M$ $ClCO + O_2 + M \rightarrow ClCO_3 + M$ $ClCO_3 + O \rightarrow Cl + CO_2 + O_2$ $CO + O \rightarrow CO_2$

 $\begin{array}{c} ClCO_3 + Cl \rightarrow Cl + CO_2 + ClO\\ ClO + O \rightarrow Cl + O_2\\ \hline CO + O \rightarrow CO_2 \end{array}$

 $ClO + SO \rightarrow Cl + SO_2$ $SO_2 + h\nu \rightarrow SO + O$ $SO_2 + O + M \rightarrow SO_3 + M$ $SO_3 + H_2O + M \rightarrow H_2SO_4 + M$

 $CO + SO_2 + O_2 + H_2O \rightarrow CO_2 + H_2SO_4$

Eddy and molecular diffusion

Mean neutral density profiles (Hedin+1983)

