

# PTYS544 Physics of the High Atmosphere

# Basic details

#### Cocation / Time

- Tuesday & Thursday, 12:30 13:45
- Kuiper Space Science (KSS)

#### Instructor

- Tommi Koskinen, KSS 421
- tommik@email.arizona.edu



#### MUA temperatures (zonal mean)



From Hocke et al. (2016), zonal mean temperatures measured by the Aura/MLS satellite experiment.

#### **Brewer-Dobson circulation**



Streamlines of mean meridional circulation in the middle atmosphere (Salby 1996): i.e., mass meridional stream function (kg m-1 s-1)

#### The Martian atmosphere



Surface temperature: 220 K Surface pressure: 0.006 bar **Composition:** 95% CO<sub>2</sub> 2.7<u>%</u> N<sub>2</sub> 1.6% Ar **Conditions:** Winds, dust storms, clouds of H<sub>2</sub>O and CO<sub>2</sub>

Small greenhouse effect, cannot support liquid water.

### Orbit of Mars



The axial tilt (obliquity) of Mars is 25°. The solar day is about 25 hr long. Perihelion ~1.4 AU, aphelion ~1.7 AU.

## Seasonal variation in density



From Forget et al. (2009): MEX/SPICAM stellar occultations

#### Basic atmospheric structure



Middle atmosphere energy balance:

- Absorption in the CO<sub>2</sub> near-IR bands
  - Absorption and emission in the CO<sub>2</sub> 15-μm band
- Absorption and scattering by dust

Plot from Gonzales-Galindo et al. (2005)

#### Changes in the thermosphere



#### **Temperatures from MAVEN/NGIMS**



#### From Stone et al. (2018)

Note that the expected solar cycle and seasonal variation in dayside exospheric temperature is about 150 K (Bougher et al. 2015a).

**Figure 19.** Comparison of modeled temperature profiles with NGIMS data. The model temperature profiles for equatorial latitudes at 12 p.m. (red lines) and 12 a.m. (blue lines) compared to DD2 (red +) and DD6 (blue +) NGIMS temperature profiles. The solid lines are for models calculated with the nominal O-CO<sub>2</sub> collisional deexcitation rate of  $k = 3 \times 10^{-12}$  cm<sup>-3</sup> s<sup>-1</sup>, the dotted lines for  $k = 6 \times 10^{-12}$  cm<sup>-3</sup> s<sup>-1</sup>, and the dashed lines for  $k = 1.5 \times 10^{-12}$  cm<sup>-3</sup> s<sup>-1</sup>. The shaded regions represent 1  $\sigma$  variabilities of the NGIMS temperatures. NGIMS = Neutral Gas and Ion Mass Spectrometer; DD = Deep Dip.

### Temperature peak and time lag



**Figure 16.** Temperature as a function of Martian local time at two constant CO<sub>2</sub> density levels:  $10^6$  cm<sup>-3</sup> (red) and  $10^9$  cm<sup>-3</sup> (blue). Measurements are constrained to latitudes between 60°N and 60°S. The shaded regions represent 1  $\sigma$  variabilities.

#### From Stone et al. (2018)

#### Carbon dioxide: Normal modes of vibration



Symmetric stretch mode  $(v_1)$ : 1388 cm<sup>-1</sup> (7.2 µm) and a degenerate bending mode  $(v_2)$ : 667 cm<sup>-1</sup> (15 µm) Antisymmetric stretch mode  $(v_3)$ : 2349 cm<sup>-1</sup> (4.26 µm) and a degenerate bending mode  $(v_2)$ : 667 cm<sup>-1</sup> (15 µm)

#### Heating rates



Heating rates from Fox (1996). The EUV/UV heating efficiency is about 20%.

# Energy balance



From Stone et al. (2018)

#### Compare with Venus



The CO<sub>2</sub> thermostat is less efficient on Mars, probably because the Martian O/CO<sub>2</sub> density ratio is smaller (Garcia Munoz et al. 2017).

### Neutral composition



Results from the Mars Climate Database (MCD): http://www-mars.lmd.jussieu.fr/mcd\_python/

#### Neutral densities in the thermosphere

