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We use a new indirect imaging method, matrix lightcurve inver-
sion (MLI), to generate surface albedo maps of Pluto from the
rotational photometric lightcurves. The mathematical basis of MLI
is established and a constrained iterative regularization method
used to invert the underdetermined system of equations. If the
secular dimming of Pluto observed in all phases of the rotational
lightcurves from 1954 to 1982, followed by an overall brightening
of the planet in later years, could be ascribed to a static surface
albedo distribution, then an albedo map can be generated using
all the available lightcurves. However, Stern et al. (1988, Icarus
75, 485-498) have suggested that an extensive covering of methane
frost sublimates as Pluto approaches perihelion, exposing dark
layers of photolyzed methane in a spatially nonuniform pattern,
and then freezes out again as Fluto passes perihelion. Assuming
that Stern ef al. (1988, Icarus 75, 485-498) are correct in their
interpretation that Pluto undergoes atmospheric sublimation and
freezeout cycles, we present an image that represents a snapshot
of Pluto as it might have appeared during the interval 1980 to
1986 by using lightcurves measured in these years. Another image
using the lightcurves between 1954 and 1986 shows very extensive
and bright polar caps though this image appears to be highly
unrealistic. We propose that the inability to fit these lightcurves
(to even remotely within the noise level in the data) furnishes
evidence to the hypothesis of large-scale and dynamic atmospheric
- volatile transport over Pluto’s surface between the mid 1950s and
the mid 1980s. © 1995 Academic Press, Inc,
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INTRODUCTION

Pluto is the smaliest planetary member of the known
Solar System. With a diameter of ~2300 km and mean
heliocentric distance of ~40 AU, the disk of the planet
subtends approximately 0.1” (Stern 1992). It has thus far
been impossible to resolve any details on Pluto’s surface
and even the HST cannot render more than ~3 resolution
pixels across the planet’s surface at visible wavelengths.
Consequently, images of the Pluto—Charon system are
primarily used for astrometric and barycentric analyses
of the system (see for example, Null et al. 1993), to refine
mass and density estimates for the two bodies, and to
acquire individuat lightcurves and spectra. Pluto exhibits
a rotational and orbital lightcurve which centains valuable
information about the surface scattering or albedo distri-
bution (Marcialis 1988). These lightcurves can be inverted
to generate images of the surface of Pluto which satisfy
the lightcurve constraints. Lightcurve inversion is a su-
perresolution, i.e., indirect, imaging technigque that can
be used to infer surface albedo distributions, pole orienta-
tions, and three-dimensional shapes for planets and their
satellites, and asteroids, and can be used to map the
brightness distribution of magnetically active spotted
stars (Rodono 1986) and contact—binary stars such as RS
CVn variable stars (Eaton and Hall 1979).

Russell (1906) first considered the potentialitics of
lightcurve inversion. He concluded that lightcurve inver-
sion via spherical harmonics decomposition was an ill-
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posed method because all of the odd harmonic compo-
nents beyond the first do not contribute to the frequency
content of a lightcurve (see also Magnusson et al. 1989).
Consequently, an infinite number of brightness distribu-
tions and/or shapes may satisfy a lightcurve. The greatest
ambiguity cccurs when only one lightcurve is measured
from an equatorial view at zero solar phase angle. For
several decades investigators appeared to have been de-
terred by Russell’s analysis of lightcurve inversion until
Lacis and Fix (1971) applied the spherical harmonics for-
malism to the asteroids 4 Vesta and 39 Laetitia. Attempts
to map Pluto’s albedo distribution using Fourier methods
were made by Lacis and Fix (1972) and Renschen (1977),
but these efforts were severely hampered by a lack of
accurate knowledge of Pluto’s pole position, and by being
constrained to use only the lowest spherical harmonics
in the lightcurve expansion. Andersson and Fix (1973)
employed an adaptation of Russell’s Fourier technique to
derive what turned out to be a fair estimate of Pluto’s
pole position, but they did not attempt to determine an
albedo distribution. The subsequent discovery of Pluto’s
satellite Charon (Christy and Harrington 1978) yielded a
reasonably accurate pole position. At about the same
time, the increasing availability of computers made the
numerical simulation of lightcurves tractable. Marcialis
(1983) first applied simple spot modeling techniques to the
Pluto problem. Subsequently, a host of papers appeared in
which further computational complexity was added to
the inversion of Pluto’s rotational lightcurves and mutual
event data (cf. Marcialis 1988, Buie and Tholen 1989, Buie
et al. 1992; Young and Binzel 1989, 1990, 1993, Drish et
al. 1993).

A rotational lightcurve inversion formalism, called ma-
trix lightcurve inversion (MLI), was previousty developed
by Wild (1989, 1991). This linear algebraic approach has
a number of advantages over spherical harmonics decom-
position. The matrix formalism readily incorporates more
than one lightcurve at different aspect angles and can
easily accommodate nonzero sclar phase angles as well
as general surface scattering and limb darkening laws.
MLI can be implemented using constrained linear itera-
tive techniques. There are many powerful mathematical
tools and software packages that have been developed in
the context of estimation and ill-posed inverse theory that
can be exploited by MLI. Furthermore, MLIrequires no a
priori assumptions about the object’s albedo distribution,
nor does it require the surface patch areas to be dynami-
cally changed during the iteration process for conver-
gence. Matrix lightcurve inversion is a fundamental depar-
ture from other rotational lightcurve inversion techniques
primarily because it is the first time the problem has been
properly posed as a matrix equation. Consequently, the
many available tools for treating well-formulated, and ill-
posed, inverse problems will enable rigorous mathemati-
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cal treatments (Root 1987, Tikhonov and Goncharsky
1987) to be applied to answering fundamental questions
concerning the performance and limitations of lightcurve
inversion (Harmon 1994).

There are three principal results arrived at in this paper.
First, application of MLI to the set of Pluto rotational
lightcurves (herein referred to simply as “‘lightcurves™)
over the years 1954 to 1986 indicates that they are incom-
patible with a static surface; this is consistent with the
analysis of Stern et al. (1988). Second, assuming that
the surface is static over the interval of 1980-1986, i.e.,
dynamical changes are sufficiently slow, we construct a
snapshot image of Pluto’s surface to show how it may
have appeared in the 1980s. Third, the efficacy of MLI
as an inversion technique is demonstrated by generating
reconstructions of a highly artificial multispot model and
a plausibly realistic model from their modeled noise-free
and noisy lightcurves. We discuss the limitations inherent
in snapshot images, the subjectively derived resolution
of the images from simulations, and the future evolution
of Pluto’s surface.

MATHEMATICAL FOUNDATIONS

Polyhedral Surface Representation

Consider a sphere of unit radius rotating with period T
inside an imaginary fixed (in space) transparent spherical
surface of unit (plus some infinitesimal) radius. Further
assume that each spherical surface is spanned by an identi-
cal discrete grid of latitudinal and longitudinal circles,
analogous to those on any standard globe, and that the
polar axes are coaligned. The internal rotating sphere will
be referred to as the object and the outer sphere as the
template sphere. The positive z axis corresponds to the
direction of the object’s angular momentum, and the x—y
plane corresponds to the plane of the object’s equator,
and the y axis lies in the plane of the sky. We can locate
points on the template sphere with standard spherical
polar coordinates (6, ¢), where 6 is the latitude coordinate
and ¢ is the longitude coordinate. Then ¢ = 0 defines the
direction of the object’s angular momentum, § = /2
defines the plane of the object’s equator, and ¢ = 0 or
¢ = 2m for & = =/2 defines the positive x axis. Partition
the grid into N latitude divisions and M longitude divisions
of extent «/N and 2n/M, respectively. Thus, the grid
on each sphere consists of NM spherical rectangles or
patches. The sub-Earth longitudinal meridian is defined
to be at ¢ = #/2.

We can reference the central latitude 6; and central
longitude ¢; of each patch on the grid by an ordered pair
of indices {i, j), where i is the latitude index spanning the
range i =0,1,2,...,N — 1, and j the longitude index
spanning the range f = 0, 1, 2, . .., M — 1. Consider
some arbitrary patch (i, j) and assume that it is viewed
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FIG. 1, The vector geometry nomenclature showing the (a, b, ¢)
unit vectors. The d unit vector is not shown for clarity.

from the direction of the unit vector p. Then the projected
area £; of patch (i, j) depends on p and the radial unit
vectors pointing to the corners of patch (i, f) as indicated
in Fig. 1. If the four unit vectors for the corners of a patch
arec designated as a, b, ¢, and d, and are indicially linked
to the (i, j) patch, the projected area of the patch is given
by the scalar-vector product:

£ =3p-@-O X (b-d
(la)

sin o 0 COS &

|

=(z)|ax—¢e a —¢, a,—c.

b—d, b,—d, b,—d,

The quantity o in Eq. (1a} is the angle between the line
of sight vector p and the axis of rotation of the body, i.e.,
the inclination angle, where the vector pis placed, without
loss of generality, in the x—z plane. The north polar axis
is oriented along the z axis in Fig. 1. If & = 90° the axis
of rotation is said to be in the plane of the sky; if « > 90°
the axis of rotation, as defined by the right-hand rule, is
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such that the northern pole of the object is out of view
to the observer defined by p. The notation « is used to
be consistent with that of Wild (1989, 1991} and so as not
to confuse the inclination angle, [, used elsewhere in the
literature with our latitudinal index {. The components of
the four unit vectors in Eq. (1a) are easily determined
from Fig. 1, where

a, = sin{#; ) cos(d; — 7/2)
a, = sin{(8,, ,) sin(¢; — 7/2)
a, =cos(f;, )

b, = sin(f;,,) cos(¢;, — m/2)
b, = sin{8,, |} sinlg;,, — 7/2)
b, = cos(8;, )

¢, = sin(f;) cos(¢h;.y — 7/2)
¢, = sin(#) sin(¢;,, — 7/2)

(I1b)

= ¢0s(f;)
sin(8) cos(¢; — 7/2)
sin(8,) sin(¢; — 7/2)

= cos(d,).

Cz
d,
dy
dz

With our selection of p to lie in the x—z plane, the angle
between p and the z axis is the sub-Earth latitude. If the
sub-Earth latitude is zero, then, as the object rotates, N
patches on the object come into view (at longitude index
J = 0 on the template sphere) and N patches move out of
view for each 2#/M advance of the object. For any other
sub-Earth latitude, part of the object’s surface (near oneg
of the polar regions) will remain in view for the entire
rotational period, and an equali area at the opposite pole
will remain out of view.

The Linear Algebraic Formulation

If the surface of the object is also divided into NM
patches, we will assume that the surface albedo is constant
within each patch, but that it can vary from patch to
patch to form a brightness or albedo distribution over the
object’s surface, (We have interchangeably used the terms
“*brightness’’ and *‘albedo’ here to describe surface be-
havior; the former characterizes a luminous or stellar sur-
face, whereas the latter depicts a scattering surface.
Henceforth, we use only the term **surface albedo distri-
bution.””) The lexicographic vector ordering of these NM
surface patch albedo values is the object vector 0. A
lightcurve consisting of uniformly spaced data values is
produced as the object makes one complete rotation in
time period T in discrete steps in angular (longitudinal)
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phase of 27 /M, or steps of 1/M in rotational phase (which
is normalized to the unit interval).

For the jth latitudinal band alone (M elements) the ob-
ject vector is the column vector,

(2a)

A\

l— —

and the object vector o for all NM patches is the column
vector,

(2b)

Rl
The object vector o is a fixed quantity for all aspect angles.
The measuted photometric lightcurves are converted into
flux units, i.e., linearized, and lexicographically ordered
into the data vector d; note that values in d are dependent
on the aspect viewing angle in the vector p. The data
vector d and the object vector o are related by the
lightcurve matrix equation

d=Ho +n, 3)

where H is a matrix whose entries consist of the
projecled areas of the NM surface patches, and n is
zero-mean signal-dependent additive noise. If a given
surface patch is on the backside of the planet relative
to the viewing vector p, then the projected area com-
puted via Eqs. (la)-(1¢) is a negative quantity. Matrix
elements consisting of projected areas which are nega-
tive are set to zero in H. The structure of H has an
interesting feature which allows very large matrices to
be readily handied and manipulated with a modest
computer. As the object sphere rotates within the tem-
plate sphere, the albedo of each surface patch is
multiplied by a projected area element that modulated
neighboring patches in the previous incremental rota-
tional phase so that each latitudinal band consists of a
square left-circulant matrix in H (Davis 1979, Wild 1989,
1991). For the ith latitudinal band this block matrix has
the form
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For N latitudinal bands there are N square M X M left-
circulant matrices in H so that for J lightcurves we can
write H as follows (superscripts designate the lightcurve
number),

-
1 1 | t
ki€ 1Cy, K Gy, K Cay
2
K2C§i chgz 11(2(353 Gy,
— 3 3 3 3
H - K3C3| K3C X K3CB! K3C8N N (4b)
J J o J
KJCBJ K_]C 3 KJCGJ K']CGN_J

where the k, represents a radiometric correction so that ali
the data is relative to a chosen standard observer-object
geometry for each lightcurve; after such a reduction is
completed these radiometric factors are unity. The matrix
H has MJ x MN elements for J lightcurves; for J = 1
the situation is the most ill-posed because of the highly
rectangular nature of H. If there are gaps in the rotational
phase coverage then the lightcurve can either be interpo-
lated through the gap or, preferably, all elements in the

rows corresponding to the gaps in rotational phase in H

are set to zero. In all the inversions herein the object
dimension consists of M = 40 longitudinal and N = 25
fatitudinal elements with J = 1 to J = 5 lightcurves used
in the inversions. Because of the circulant nature of the
block circulant matrices, only JMN elements of H need
to be stored for iterative inversions. That is, a N X N
circulant matrix can be fully specified by only N elements.

A generalization of MLI to accommodate arbitrary
shaped objects, e.g., asteroids, has been developed by
Wild (submitted for publication; see also Wild et al.
(1994)); this formalism entails having the vector quantitics
a, b, ¢, d being the unknowns (‘‘vertex distances’”). The
circulance carries over into the definition of H using the
template sphere concept, though the object’s shape also
couples into H so that the resulting system of equations
1s nonlinear (though still algebraic).

LIGHTCURVE INVERSION

Object Estimation

The process of lightcurve inversion consists of ob-
taining an estimate of an object’s image from the object’s
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lightcurve(s). Using MLI an estimate of the unknowns in
o, designated as 6, which is the reconstructed object or
image (NM-dimensional vectors), is obtained given d (JM-
dimensional vector), Eq. (3), and whatever mathematical
and physical constraints are imposed on the system. That
is, there are NM unknown quantities and JM linear equa-
tions constrainting these quantities,
A direct inversion of the lightcurve matrix Eq. (3) is
given by
6=H'd (5a)
However, this direct inversion is impaossible, even if J =
N, because the null space of H is nonzero whereby H is
singular (Wild 1991). If limb darkening and nonzero solar
phase angle effects are integrated into Eqgs. (1) and (4) the
nullity of H (the number of zero singular values) will
diminish. For Pluto solar phase angle effects arc essen-
tially nonexistent since it never exceeds 1.9° and there is
evidence that limb darkening effects may also be negligi-
ble, at least for the sub-Charon hemisphere of Pluto, since
Pluto is essentially always viewed in an opposition-type
geometry (Young and Binzel 1993).
More generally the generalized inverse estimate is

6 = H*d, (5b)
where H* can be practically computed as the limit
H' = I;_l)rgl (H'H + 3I)"'H’ (5¢)

for least-squares inversion, or SVD techniques can be
profitably used (Jennings and McKeown 1992). The small
damping term can be replaced by a smoothing matrix to
become a regularized estimator (Root 1987, Thompson
and Craig 1992). Other, somewhat more esoteric, forms
than Eq. (5¢) for the generalized inverse exist (Campbell
and Meyer 1991). In addition to the least squares inverses
there are optimal estimators that use a priori specified
first- and second-order statistics of the object, i.e., covari-
ance matrices, to estimate the most probable object given
the noisy data (Luenberger 1969); Wild (1989) discusses
the use of these estimators for lightcurve inversion.
Invariably there are gaps in the data sets entailing the
need for a weighting matrix W consisting of unity and
zero diagonal entries to operate on H. The zero entries
in W act to zero out those rows of H corresponding to
longitudes where there are gaps in the rotational phase.
In a more rigorous treatment the elements of W are pro-
portional to the photometric flux signal, i.e., W;'? =
l/o; where o} is the variance of the jth data point, for
each rotationa) phase increment whereby Eq. (3) is oper-
ated upon by W~ '? on all terms to derive the weighted
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{or damped) least squares inverse estimator (often called
the Gauss—Markov estimator). In our analysis we set to
zero the elements in those rows of H that correspond to
points in the rotational phase where there are gaps.

Equation (5b) can be implemented using SVD tech-
niques, which in fact are a form of smoothing when small
singular values are set to zero so that components of the
noise vector that would otherwise be amplified by these
small singular values are put into the null space of H.
That is, the solution is smoeothed in the sense that the
troublesome noise components are filtered out so that
they are not inverted, In the case where the kernel is
singular, the SVD method finds the solution which mini-
mizes the least-squares residual subject to the constraint
that the solution vector has the smallest Euclidean norm.
(In other words, the sum of the squares of the components
of the solution vector should be minimized. For the
MLI case, this corresponds to minimizing the sum of
the squares of the albedos of all the surface elements.)
Hence, SVD can be viewed as a regularized solution
in which the smoothing constraint is that the solution
has the minimum Euclidean norm out of all solutions
which have the smallest possible residual. However,
there is no reason to think that Pluto’s surface features
should try to minimize the sum of the squares of
the albedos of the patches! The bias toward minimum
Euclidean norm of the solution means that solutions
consisting of bright spots on a dark background will be
preferred to solutions consisting of dark spots on a
bright background (Harmon 1994).

We estimate the object vector o using an iterative regu-
larization technique. Using regularization allows a variety
of smoothing constraints to be evaluated and the most
successful to be selected; examples include first and sec-
ond derivative smoothing and maximum entropy. With
SVD there is no explicit smoothing constraint, thus re-
moving some freedom in generating reconstructions.
After each iteration albedo boundedness in {0, 1] can
be implemented. The constrained iterative regularization
methods are inherently nonlinear; this makes it difficult
to quantitatively determine the error propagator for the
system. The error propagator is the ratio of variance in
the reconstruction to the variance in the data due to noise,
and sometimes referred to as the noise gain. The error
propagator is handily found using purely linear SVD tech-
nigues or unconstrained iterative methods. Furthermore,
large object dimensions imply uncomfortably large H ma-
trices and iterative techniques can take advantage of the
cyclic nature of H to minimize storage requirements.
Also, speed enhancements can be made because opera-
tion on a vector by a left-circulant matrix corresponds to
cross-correlation of the first row of the matrix with the
vector; this means that the multiplication can be sped
up by performing the computations using fast Fourier



IMAGES OF PLUTO

transforms. For the present work we did not take advan-
tage of this speed enhancement.

The constrained Jacobi iteration can be used to estimate
o, where 8 is the nth iterate of the object estimate (Press
et al. 1986, Spedicato 1991);

o) = ¢ + BHT(d - Ho™)
— ASa", o e f0,1]. {(6a)
Bis an acceleration parameter, A is a smoothing parameter
ideally chosen so that the reconstruction does not exceed
the noise level in the data, and § is a Laplacian smoothing
matrix (Twomey 1963, 1977). Young and Mai (1991) and
Press er al. (1986) discuss the optimal choice of 8 as
well as more efficient iterative estimators than the Jacobi
technique used here. For inversions with J < 3 we use
B8 =2, and for J = 4 we use 8 = 1; these choices ensured
uniform convergence in the root mean squared (rms)
lightcurve error (see below, Eq. (7)). We choose 6% to
be a constant for all surface elements (0.6), though an
equally good initial estimate is 6@ = H’d. The Jacobi
implementation in Eq. (6a) converges notoriously slowly,
though this was not a concern nor difficulty for arriving
at our results. Vastly superior convergence speed with
MLI can be attained by using the conjugate gradient mini-
mization algorithm with typically on the order of 30-100
iterations which can be accomplished in minutes on an
IBM RS8/6000 workstation (Harmon 1994).
For ¢ach nth-object estimate 6™ the lightcurve error
vector is
e®=d-d” =d- Hé". (6b)
The imposition of a [0,1] albedo boundedness constraint
upon performing each iteration in Eq. {6a) is, interest-
ingly, very powerful in regard to narrowing the acceptable
class of solutions of o in Eq. (3) by filtering out those
components of noise in the solution that are inconsistent
with this constraint (Lucy 1992). Nonnegativity is of criti-
cal importance in ill-posed problems not too dissimilar to
the present paradigm (cf. Gindi et al. 1984, Smith et al.
1985).
The figure of merit used to describe performance of
MLI is the rms lightcurve error e. It is computed from
all /M entries in e using the formula

M
e= \/ ) [,21 (ek<f’)2], @

which is convertible to the x? statistic with equal (unity)
weighting for elements of d (via W™'2) in Eq. (6b}. The
rms lightcurve error ¢ initially decreases exponentially
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with each iteration and then slowly converges to an
asymptotic value, which depends on the noise in the data
and choice of smoothing constant, and where the ¢, are
the elements of the lightcurve error vector in Eq. (6b) for
the kth lightcurve. The true rms object error is unknown
in practice.

In the absence of smoothing the solution for o from Eq.
(3) is nonunique because there may be an infinite number
of solutions that will have the same x? statistic. When
smoothing is included, the smoothest solution out of all
those with the specified x? is singled out and selected as
“‘the’” solution. That is, when smoothing is included the
nonuniqueness disappears. Furthermore, the use of
smoothing will, for the most part, alleviate the need for
the albedo positivity constraint, i.e., the albedo constraint
is not responsible for the convergence of the solution.
The gross features of the solution remain intact for a wide
range of smoothing parameter values. As the smoothing
parameier is decreased (less smoothing) the albedo map
shows increasing resolution manifested as sharper edges
and closcly spaced spots become separately resolved, etc.
However, the same bright and dark regions appear in the
image independent of the smoothing parameter’s value.
There is a limit to this process since if too little smoothing
is used noise artifacts begin to dominate the reconstruc-
tion, rendering it useless.

Harmon (1995) has examined in detail the question of
attainable surface resolution of the MLI technique given
a specific set of lightcurves, noise in the data, the latitude
dependence, etc. Some qualitative observations are given
in Wild er al. (1994) for the single lightcurve case, and
we discuss this issue further below.

Determining the Optimal Smoothing Parameter

The optimum value of the smoothing constant A de-
pends on the amount of noise in the data. Ill-posed prob-
lems are prone to instabilities because of noise in the data
and smoothing constraints stabilize the solution (Turchin
et al. 1971). Different strategies exist for choosing the
smoothing parameter A. The first is to empirically estimate
the optimal smoothing parameter A by conducting simula-
tions with noise, using the measured data, and estimating
the approximate value such that discernible noise-induced
artifacts do not appear. A second more quantitative ap-
proach is to examine the variance of the lightcurve dis-
crepancy, i.e., d — d, where d is the lightcurve of the
reconstructed object, and to find the smoothing parameter
such that this variance is consistent with the known noise
level in the data. Thompson and Craig (1992 and refer-
ences therein) discuss various other approaches for the
choice of the smoothing parameter in the context of astro-
physical inverse problems.

To understand the effect of noise in the reconstruction,
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TABLE 1
Lightcurve Data Sets

Year Np Sub-Earth  Observer(s) Notes
Lat. (deg)

1986-90 43 -3.0 to 5.0 Kiladze, Exceptionally noisy data
o=93° (o Kukhianidze (estimated 0.1 ercor bhars
a=85° in the B,V magnitude data)

1986 44 -3.0 Tholen, Buie Very high quality data:
a=93° Lark considered the “"standard”

1982 31 -11.0 Binzel. Extrancous "hump" fecature
a=10(° Mulholland ncar 0.3 rotational phase

1481 18 -13.4 Tholen, Tedesco Shape similar to 1986,
a=103.4° large gaps in rotational phasc

coverage

1980 24 -15.5 Tholen, Tedesco Coensistent with 1981; can
w=105.5° be merged with 1981 datasct

1975 12 -25.9 Lane. Neff, Fix Excessively noisy; poorly
a=115.9° sampled over rotational phase

1973 28 -29.5 Neff, Lane, Fix Noisy; "bunched" in rolational
o=119.5° phase  domain

1972 18 -306.5 Andersson and  Very noisy
a=l215¢  Fix

1964 14 -44 .6 Hardie Moderately naisy; pour
a=134.6° rotational phase sampling

1954 21 -54.6 Walker, Hardic Moderately noisy: Kuiper's six
g=144 6° 1953 points cx¢luded

we may construct a lightcurve that is a constant value
over all rotational phases but with a solitary point having
a value above this level. A reconstruction is generated
from this lightcurve. The [0, 1] constrained iterative inver-
sion will produce a reconstruction whose lightcurve is a
gaussian-centered noise spike (though with a smaller peak
amplitude). The reconstruction is a wedge-type feature
bounded between tongitudinal meridians where the longi-
tudinal width is a function of the noise spike amplitude,
Reconstructing noisy data with a smoothing parameter
that is too small results in these wedges forming. Further,
cusps in the data, i.e., first-derivative discontinuities, cre-
ate cross-meridianal features in the map. The latter arti-
fact appeared when, very early on in our application of
MLI to Pluto’s lightcurves, we a priori smoothed the
data without properly accounting for the cyclic nature
(periodicity) of the lightcurves at the endpoints of the
rotational phase.

ROTATIONAL LIGHTCURVE REDUCTIONS

The Lightcurve Data Sets

The lightcurve data sets are summarized in Table I;
they are discussed in detail in Mercialis (1988). Each data

set consists of pairs of numbers (¢, m(f)), where ¢ is the
time of the measurement and m(f) is the measured visual
{V} magnitude of Pluto (and Charon). These data, with
the addition of the more recent 1986 lightcurve (Buie and
Tholen 1989), are identical to that used in Marcialis (1988);
all have been reduced to a common viewing geometry
with mean opposition and heliocentric distance of 39.5
AU, geocentric distance of 38.5 AU, and solar phase angle
of 1°. The data have also been corrected for light travel
time. The (B-V) = + 0.82 color index is used to convert
B to V magnitudes to compare with data acquired before
1980. This choice of B—V is adopted because the photome-
try is integrated over the whole Pluto—Charon system.
There is evidence that Pluto’s color varies as a function
of rotational phase (Tholen and Tedesco 1984; Marcialis
and Lebofsky 1991). Our choice of this B-V value as-
sumes that Charon has only a small, if any, lightcurve of
its own and that its color is relatively independent of
longitude; consequently, arepresentative B—V for the sys-
tem can be chosen. Since the color does not vary by
more than 1 or 2% throughout a rotation, this is a good
approximation. It should be pointed out that Pluto’s B—V
may not have remained constant over the 30-year interval
spanned by the photometry. The sub-Earth latitude has
changed and there may also be seasonal effects; there is



IMAGES OF PLUTO

0 . 1

Rotational Phase

151371_— S
15.417

o Rotational Phase 1

FIG. 2a.

0.001 151760 —— oo gar
'ﬂ(ﬁ._&

g \
_/ A
—I0.712 15.474 o -

15.107 - 10.724 15.179 - o
e [ - A
‘[ r T “
15.287 \19.514 15.474 \-J
a i 0

0.702 15152———————-

0.544 15.462

367

0.677
Fe

e N\

1 0.517
Rotationa! Phase

0.669

10.51 7
Rotational Phase

0.693

,-4’\.\*

s /’
e

Rotaticnal Phase

" 0.524

o

{Top left) The 1954 lightcurve; (center left) the 1964 lightcurve; (bottom left) the 1975 lightcurve; (top right) the merged 1980 and

1981 lightcurve; (center right) the 1981 lightcurve; (bottom right) the 1986 lightcurve. A running median trace goes through the lightcurves. These
data are all shown in V magnitude and a 0.167 correction is added to all data to remove the contribution from Charon. These data are plotted
directly from the tabulated data shown graphically in Marcialis (1988). All images in this article have been produced from these data after suitable

reductions have been carried out.

no known way to go back and account for any variation.
[Binzel (1988) determined (B-V) for the anti-Charon
hemisphere of Pluto to be 0.867 = 0.008 and the sub-Pluto
hemisphere of Charon to have (B-V) = 0.700 = 0.010 from
mutual event multicolor photometry; from this Charon
{B-V) color index Binze! {1988) notes that this is nearly
the same as the incident sunlight (B—V) = 0.65 value,
implying that Charon is a gray, or neutral colored, object.)

We follow the prescription presented by Marcialis
(1988) in our usage of the lightcurves presented in Table
I. Kuiper’s six points ¢btained in 1953 are excluded and
Kiladze’s (1967) data is not used. Kuiper’s six points
clearly increase the noise variance when used with the
data of Walker and Hardie (1955); this implies that these
data are not properly calibrated (Marcialis 1988). The data
acquired in the 1970s by Lane et al. (1976), Neff et al.
(1974), and Andersson and Fix (1973} are very noisy. The
1973 lightcurve is confined within the upper half of the
rotational phase domain. The 1980, 1981, and 1982
lightcurves can all be merged together, though the 1982
lighteurve (Binzel and Mulholiand 1984) has a spurious
bump at 0.3 rotational phase that is counter to the general
trend exhibited (the “*shelf™” feature) by other lightcurves
taken concurrently. Burwitz er al. (1991) merge
lightcurves over the years 1982-1990 and assume an axis
in the plane of the sky for their 1D longitudinal decoavolu-
tion of the rotational lightcurves. Buie and Tholen (1989)

published a lightcurve acquired in 1986, which we reduced
for our analysis to the common viewing geometry. This
lightcurve appears to be the most comptete in regard
to rotational phase coverage and clearly is the least
noisy of the ensemble of lightcurve data available at
this writing. We use this lightcurve as the reference
standard from which we judge the quality of the other
data sets in Table I. An additional data set was recently
published by Kiladze and Kukhianidze (1992}, but the
data are exceptionally noisy and unusable for our analy-
ses. The original lightcurve data used in our inversions
are plotted in Fig. 2a. It should be noted that these
plots may appear to deviate slightly from those of
Marcialis (1988); this is simply because Marcialis (1988)
hand drew the data and our plots are computer drawn
from the tabulated data.

Reductions for Use with MLI

The reductions for the 1986 lightcurve (Bui¢ and Tholen
1989) proceed as follows. Assuming a phase coefficient
of 0.037 mag/deg, and correcting the published tabulated
lightcurve to mean opposition using r = 39.5 AU heliocen-
tric distance, A = 38.5 AU Earth-Pluto distance, and
ag = 1° the solar phase angle, via the formulae,

B [0.005775518 days
Loorr = tobs —

NG ] [A AUJ, (8a)
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FIG. 2b. The normalized disk-integrated lightcurves for 1954 (*},
1964 (x), 1981 (+), and 1986 {0). These data are used directly by MLI
and are normalized to the interval [0, w]. Regions in rotational phase
where there are gaps have corresponding rows in the H matrix set to
Zer0.

and

rA }
(39.5)(38.5)
— 0.037{ler,| — 1°}.

Bcorr =B-3 IOgH}{
(8b)

Here Eq. (8a) is the light travel time correction for the
Julian date of the observation and Eq. (8b) is the B magni-
tude at the standard viewing geometry adopted for Pluto
(Marcialis 1988), and |a,| is absolute magnitude of the
solar phase angle at the time of observation. The resuits
of applying Eqgs. (8a) and (8b) to the 1986 lightcurve are
given in Tabje I1.

Pluto may be regarded to be a sphere viewed at an
opposition geometry at all times so each magnitude mea-
surement represents the integrated brightness of Pluto
over a projected area of 7 (assuming that the radius is
normalized to unity). Without limb darkening X, £; = 7,
incorporating limb darkening in the definition of £;;, gives
an effective total projected area of X, £; < . Herein
we assume that Pluto exhibits no limb darkening effects.
Young and Binzel (1993), and Young (1992), give evidence
for this assertion wherein they estimate Pluto’s global
normal reflectance from the observed sub-Charon geo-
metric albedo. They show that the Minnaert limb darken-
ing coefficient is close to 0.5, indicating no substantial limb
darkening. However, Young and Binzel (1993) emphasize
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that a more careful analysis is needed utilizing inferior and
superior mutual event lightcurves to properly separate out
the correlated effects of Pluto’s radius and limb coeffi-
cient.

Each Pluto lightcurve data set is assumed to be viewed
from the sub-Earth latitude indicated in Table I. Further,
we assume that the contribution of Charon to the V magni-
tude data for Pluto merely alters the relative brightness
of the surface elements, so that the absolute locations
of surface features are unaffected by the contribution of
Charon to the V magnitude. That is, we assume that
Charon has no intrinsic lightcurve at visual wavelengths
to contaminate Pluto’s lightcurves. To correct for Charon,
we subtract a constant value of 0.167 magnitude from
each measured visual magnitude m(r) (cf. Olkin er al.
1993, Buie and Shriver 1994). The assumption of Charon
as a featureless sphere is corroborated by recent observa-
tions of the individual lightcurves of Pluto and Charon
(Olkin et al. 1993) where B filter lightcurves of Charon are
stated to be consistent with zero peak-to-peak amplitude
variation,

The inversion formalism requires the “*alignment,’’ or
phase shift, of all lightcurves for the same object, i.e.,
the zero rotational phase point in each lightcurve is refer-
enced to a sub-Earth longitude meridian that is fixed on the
planet. The time ¢ for each measurement is transformed to
the rotational phase domain p by the modulus of the time
with respect to the synodic rotational period of Pluto,
T = 6.3872 days,

p =mod(t — Jy, T), O

where J;is the reference Julian day. After this transforma-
tion, each data set consists of pairs of numbers (pT, m
(pT)), where p is the rotational phase of the measurement
and m(pT) = m(¢) is the measured visual magnitude of
Pluto.

In general, the number of points in each lightcurve data
set will not correspond to the choice of M and the data
will be unequally spaced in rotational phase. Only those
rotational phase points which have nearest neighbor data
points are used; the gaps are weighted to zero in the H
matrix. Linear interpolation is used on the nearest neigh-
bor data points to obtain those points that have a spacing
of duration 2% T/M. Each data set then consists of at most
M points m; = m(pT), where m; is the V magnitude for
longitude index j. We investigated the feasibility of inter-
polating the data across regions where there were substan-
tial gaps in the rotational phase coverage, but this causes
two difficulties. The first is that an interpolation usually
follows some simple power law but, particularly for large
gaps, the true {unmeasured) lightcurve may be signifi-
cantly different. This will adversely affect the reconstruc-
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TABLE I1
Buie and Tholen (1989) 1986 Lightcurve Data Reduced to
' Common Viewing Geometry

Jd at mean opposition B magnitude {stn dev}
2446413.96885 15.9595 0.0028
2446427 945387 15,9244 0.0045
2446428.96096 15.8280 0.0075
2446432.95749 15.9682 3.0023
2446441.93542 15.8271 0.0023
2446442.90659 159287 0.0028
244644295220 15,9352 4.0032
2446443 87832 16.1330 0.0034
244644393767 16.1368 0.0033
2446444 88124 16,0544 0.0046
2446444 97135 16.0533 0.0043
2446445 94620 15.9584 0.000%
2446448.88501 15.9008 0.0122
244649594474 16.0957 0.0185
2446497 93416 15.9347 0.0051
244649891059 15.8722 (1.0OOSE
2446499 90975 15.8559 0.0070
244650090515 [6.0476 0.0062
24465(01.92245 16.1238 0.0066
2446502 88631 159912 0.0053
2446509.81724 15.9605 0.0012
2446509.94949 15,9551 0.0019
2446513.93863 16.1084 0.0032
2446523.74753 15.9401 (1.0062
244653970382 ta. 1162 0.0028
2446539.81192 16,1257 0.0045
2446539.93001 16.1326 0.0020
2446540.70530 16.0540 0.0057
2446541.76522 15.9557 0.0012
2446542.72636 15.9357 0.0030
2446542.87207 15.9274 0.0030
244654373120 15.8504 $.0047
2446544.65583 15.8457 0.0079
244654474978 15.8651 0.0030
2446577 84515 16.1228 000890
2446578.72366 16.1093 0.0053
244657973272 15.9804 3.0040
2446589.74267 15.9230 0.0041
2446590.73404 16.1186 0.0048
2446591.73645 16,0748 (3.0045
2446608.61489 15.8673 ¢.0014
2446608.80316 15.9007 0.0031
2446619,63145 15.9280 0.0021
244662068167 15.8370 0.60t9

tions. Second, interpolation tends to produce cusps which
will lead to undesirable artifacts in the image.

Each Pluto lightcurve consists of V magnitudes and
these must be converted to flux units for the data vector
d in the linear MLI technique. The V magnitude data
m; is converted to the d; in d using the magnitude-flux
equation

dj =g 100.4(m0—mj),

(10)

where m, is a reference magnitude, such as that of the

369

Sun. The = factor in Eq. (10) arises because entries in d
arc normalized to the interval [0, 7 ].

MLI is the matrix equivalent form for the inversion of
the Fredholm integral equation of the first kind that is
implicit in Eq. (10) (Wild 1989), i.e.,

]0(}.4[ms—m(p)] — gL 5(8’ ¢ - ZPW)A(ea d))! (11)

where m; is the magnitude of the sun, « is a radiometric
factor, £ the projected area of a small surface patch cen-
tered on the specified coordinates with p being the rota-
tional phase, and A(#, ¢) is the geometric scattering albedo
at a point on the planet’s surface. The ¢-2pmw dependence
in the £ kernel refiects the transformation from template
sphere coordinates to body-fixed coordinates, where 6
and ¢ are defined to be body-fixed coordinates in Eq.
(11), and shows that this is a linear shift-invariant process,
i.e., a convolution kernel. If the scattering properties of
Pluto’s surface are known or assumed a priori then with
m, = m, the Sun furnishes an absolute flux standard and
the only remaining free parameters are attributes of the
surface physics. We assume vniformly geometric scatter-
ing over the entire surface, which is considered to be a
reasonable assumption for asteroid regoliths at zero solar
phase angle (French and Veverka 1983). Pluto is effec-
tively always in an opposition geometry though the valid-
ity of this assumption depends on the scattering physics
of the various surface ices, The choice of m, will affect
the absolute geometric albedo of surface features, though
not their relative albedos, position, shape, etc. We adopt
m, = 14.757 based on the assumption that for the point
in the rotational phase corresponding to the brightest point
in the 1954 lightcurve Pluto has an average surface albedo
of 0.8 (normalized to disk-integrated brightness this is
2.513). This value for m, is used in the conversion of all
the lightcurves to entries in d. Figure 2b shows the 1954,
1964, 1981, and 1986 lightcurve data, after conducting the
necessary conversions, which are in d.

Since Charon was discovered the pole orientation of
Pluto has been determined with high accuracy and there-
fore the aspect angle is well characterized for all
lightcurves. Consequently, the aspect angle is introduced
as an a priori known quantity into our inversions.

QUALITATIVE INFERENCES

Stern et al. (1988, Fig. 1; see also Buie and Tholen
1989, Fig. 2) show the smoothed 1954, 1964, 1975, and
1982 lightcurves in V magnitudes on the same graph.
These data readily show the secular decline in average
brightness, the increasing in lightcurve amplitude from
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1954 to 1982, and the formation of the **shelf”” feature
centered around rotational phase 0.3 (Buie and Tholen
1989). The 1986 lightcurve, not shown in those plots, is
slightly brighter than the 1982 lightcurve; the brightening
trend is illustrated in Buie and Tholen (1989, Fig. 3). In
1954 Pluto’s aspect was with the southern polar region in
full view; i.e., the sub-Earth latitude is — 54° (see Table
D). In 1986 the axis of rotation is nearly in the plane of
the sky and the south pole is tilted 3° toward us. In this
section we give a qualitative assessment of the consis-
tency of these lightcurves assuming a static surface by
examining their averages, amplitudes, and changes in the
lightcurve between 1954 and 1986. In all our analyses we
assume that the lightcurves are caused strictly by surface
albedo variations.

Using Lightcurves Closely Spaced in Aspect Angle

A serious concern when we generate images from
lightcurves closely spaced in time is the small change in
Pluto’s aspect angle. From 1981 to 1986 it has changed
by ~10°. Is this sufficient to discern latitudinal surface
variations over the entire surface or just part of the sur-
face? The answer, as determined from numerous simula-
tions, appears to be dependent on the noise variance rela-
tive to the change in mean lightcurve level between the
two lightcurves and the structure of the surface features
involved.

Consider presently an object with a complicated overall
albedo map but with an extended and uniformly bright
axis-centered polar cap. A single lightcurve cannot recon-
struct the polar cap without a priori information about its
existence because the polar cap does not contribute to
photometric modulation in the rotational lightcurve. If
two noise-free lightcurves L, and £, could be acquired at
slightly different aspect angles, i.e., one with o, = alf,)
and the other with o, = a(t,) with t, = ¢, + Ar and
o, > a, (analogous to Pluto’s behavior with our aspect
angle nomenclature, given in Fig. 1), and the mean values
are such that L; < L, a bright region situated in proximity
to the northern axis will appear in the reconstruction from
these two lightcurves. With the inclusion of noise the
error in the estimate of the difference in the lightcurve
means, i.e., L, — L,, will increase as the variance of the
noise in L, and L,, with the result that the size, longitudinal
-extent, and even proper axis of location of the polar bright-
ening will change. If the noise variance in the lightcurves
is sufficiently large no bright polar region may appear.
The analogy can be extended to general axially symmetric
features such as bands because such features contribute
only to the mean level between lightcurves measured at
different aspect angles. If the difference in aspect angles
between lighicurve measurements is large then a corre-
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FIG. 3a. (Top) First Pluto snapshot image. Spherical representation
surface map using the 1981 and 1986 lightcurves, The sub-Charon hemi-
sphere in our maps corresponds to the 1/4 rotational view of the planet.
Northis upin all of these figures, (Bottom) Mercator map representation.

spondingly larger measurement noise variance is needed
to mask out the presence of the axially symmetric feature.
In other words, the reconstruction of axially symmetric
features, particularly for snapshot images—those defined
to be taken from two or more lightcurves with aspect
angle changes that are small, i.e., ~10°—are extremely
sensitive to noise in the data.

An inspection of the combined lightcurve plot in Stern
et al. (1988, Fig. 1) very rapidly convinces one that under
the assumption of a static surface that something very
bright was persistently pointing toward us, over all rota-
tional phases, in 1954 and receded away as the ycars
passed and as Pluto’s aspect angle migrated to its present
state. Such a persistent feature must be a bright region in
the proximity of the south pole. Because of measurement
noise, with only a small change in aspect between two
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FIG. 3b. (Top} Second Pluto snapshot image. Spherical representa-
tion surface map using the merged 1980 and 1981 lightcurves in conjunc-
tion with the 1986 lightcurve. (Bottom) Mercator map representation.
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FIG. 3c. Residuals between the tightcurve fit obtained by using MLI
and the 1981 and 1986 lightcurve data sets that were used in the recon-
struction of Fig. 3¢, Here * is the 1986 residual data and x is the 1981
residual data.
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lightcurves it is essential that the noise variance be sig-
nificantly less than the average change in mean lightcurve
level. Therefore, to construct useful snapshot images of
Pluto using lightcurves taken only a few years apart it is
necessary to absolutely minimize sources of error and
noise.

Consistency of the Pluto Lightcurves

Referring to the illustration of Stern et al. (1988, Fig.
1), Pluto has dimmed about 0.3 V magnitude between
1954 and 1982. After 1982 Pluto brightened somewhat,
suggesting that a bright region is in view over all rotational
phases. However, the aspect angle difference is about 12°%;
is this change commensurate with the average brightness
increase? Only a very small polar region, particularly in
regards 10 projected area, surrounding the north pole has
come into view. Further, can the 43° change in aspect
satisfactorily account for the mean change of 0.3 magni-
tude from 1954 to 19827 MLI will generate an image that
fits the furnished data and constraints by minimizing Eq.
(7). Assuming photometric consistency and that the sur-
face is truly static MLI should produce an image that fits
all the lightcurves in the 1954—1986 interval to within the
noise level in the data. Noise artifacts should appear in
the images when the lightcurve fits get below the noise
level provided that the iterations do not converge prior
to reaching this level. That is, if the data are inconsistent
because the surface is not static, MLI will converge to
an image before the noise level is reached. Conversely,
if the MLI reconstruction converges toward an image
prior to reaching the noise level (and the associate noise-
induced artifacts do not appear) then we may conclude
that the lightcurves are consistent with a nonstatic
surface.

Pluto’s mean lightcurve magnitude has changed from
1954 to 1982 and is ~0.3 magnitude (~30%) and Pluto’s
aspect changed from having all arcas greater than 54°
south latitude in fuli view to having polar regions to being
approximately 50% in view. Therefore, half of the total
projected area of this polar feature accounts for Pluto
brightening by 0.3 magnitude. Assume the presence of a
large southern polar cap. A high albedo (~1) polar cap
that extends from the equator to the pole covers in excess
of 80% of Pluto’s projected area in 1954, and covers some--
what more than 50% in 1982, which is consistent with a
30% change in mean lightcurve brightness. If Pluto’s sur-
face is static over this interval, then the region of the
surface that causes the ~0.1-magnitude 1954 lightcurve
variation is constrained to lie at northern latitudes be-
tween 0° (the equator) and +36°. The additional ~0.2-
magnitude variation in the 1982 (or 1980 and 1981)
lightcurve must be caused by features above a north lati-
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FIG. 3d. (Top) Third Pluto snapshot image. Spherical representation
surface map using the 1980 and 1986 lightcurves. (Bottom) Mercator
map representation. Some brightening in the south polar region region
appears in this map.

tude of 36°, though the northern polar region must be dark
otherwise the mean change in lightcurve level cannot be
caused by our hypothesized full southern bright polar cap
moving out of view. If the northern regions above 36°
latitude are bright then the southern polar area would
have to be larger, implying that the near-equatorial lati-
tude band where the 1954 lightcurve variations exist
would get even narrower, i.¢., confined to latitudes below
36°, and with greater albedo contrast or excursions from
that of the bright southern region. Now let us include the
1986 lightcurve in our thought experiment. Whatever lies
above the northern 36° latitude meridian cannot be mostly
dark but contribute about a factor of three to the lightcurve
amplitude as compared to1954, as deduced from an exami-
nation of the Stern et al. (1988) Fig. 1 or the Buie and
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Tholen (1989) Fig. 2. The change in the orbital lightcurve
at the “max’ point in the lightcurve is approximately
0.15, whereas it is approximately 0.3 magnitude for the
“min" portion of the lightcurve, so bright areas must
exist above north latitude 36°. However, when 1986 is
included, it demands that a further fraction of the bright
southern region has moved from view (now at almost
exactly 509) and that a small bright northern polar area
has entered into view in addition to whatever bright re-
gions existed to explain the large 1982 lightcurve ampli-
tude variation; this is required to account for the overall
brightening of the 1986 lightcurve. The entire bright area
must be constrained to lie about north latitude 78°, which

-1is feasible with 1986 being about 0.02 magnitude brighter

than 1982 on average. Therefore, the presence of the small
bright cap for the 1986 lightcurve plus the bright regions to
satisfy the increased 1982 lightcurve amplitude variations
have the effect of increasing the high albedo southern
polar cap to go into northern latitudes and hence to com-
press the region over which lightcurve amplitude varia-
tions may occur for 1954 and hence also subsequent
lightcurves. Further, with the latitude band for variations
made smaller the albedo contrast variations increase to-
ward the maximum allowed in [0,1], i.e., very dark and
very bright only or from close to zero albedo to near unity
albedo. The conclusion to be drawn from this exercise is
that the ensemble of lightcurves from 1954 to 1986 are
not mutually consistent with each other and hence MLI
should demonstrate this effect by being unable to fit all
the lightcurves selected from any grouping of lightcurves
that uses one or both members of the set {1954, 1964}

with one or more members of the set {1980, 1981, 1982}
and with {1986}. Further, M1.! should fashion an image
with a large bright southern polar cap, a narrow high
contrast band above this southern polar region, and a
bright, possibly irregular, northern region. Consequently,
the constrained inversion will be unable to simultaneously
fit these lightcurves to within the noise level in the data.

INVERSION OF PLUTQ LIGHTCURVES

Snapshot Images from the 1980s Lightcurves

The MLI method was first applied to the 1980s Pluto
lightcurves. The value for A, empirically determined such
that no obvious noise artifacts appeared, is A = 0.0005
for all Pluto reconstructions. This value of A is not optimal,
but is close to optimal. Iterations continue until the rms
lightcurve error €, Eq. (7), remains constant in the fourth
decimal place over at least 10,000 iterations. Both spheri-
cal and Mercator MLI maps of Pluto using the 1981 and
1986 lightcurves are shown in Fig. 3a. The rms lightcurve
error using Eq. (7) converged to 0.0116. Pluto is shown
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at 0.25 rotational increments in the spherical rendition;
for the 1/4 rotation view the sub-Charon point lies on the
central meridian of the image and this meridian lies at
zero rotational phase on the Mercator projection maps
(the left edge). A complete rotation or 6.3872 days brings
us back to the top left of Fig. 3a; the bottom map in Fig.
3a is the equivalent Mercator projection map, The pixel
scale is ~ 145 km in latitude by ~180 km in longitude or
7 by 8 mas at 30 AU. Figure 3b depicts the reconstruction
where the 1980 and 1981 lightcurves are merged to reduce
gaps in rotational phase with an aspect angle of & = 104.5°
(the average aspect angle for 1980 and 1981) and used
with the 1986 lLightcurve in the snapshot image. For this
reconstruction the rms lightcurve error converged to
0.0141. Figure 3¢ shows the residual between the 1986 and
1981 lightcurves and the reconstructed object lightcurves.
Figure 3d uses the 1980 lightcurve alone with the 1986
lightcurve, with a rms lightcurve error that converged to
0.0126.

The image in Fig. 3a shows a significant departure from
other (nonspot model) published Pluto images (Young and
Binzel 1993, Buie et al. 1992), namely, our image does
not show a bright and extended southern polar cap. The
image in Fig. 3b is generally the same (subjectively) in
most respects to that in Fig. 3a, but the sub-Charon hemi-
sphere agrees better with that of Young and Binzel (1993).
In particular, the bright region “‘B”" in Young and Binzel
(1993, Fig. 8) that exists in the Buie et al. (1992) map is
present in this map. The central brightening in both Buie
et al. (1992} and Young and Binzel (1993) can also be
accommodated by the north polar region in this map. In
contrast to Burwitz e¢ al. {1991), who find a dark northern
cap, our snapshot maps show a brighter northern region
because the mean 1986 lightcurve level is slightly brighter
than the mean 1981 lightcurve level, i.e., indicating that
a bright and northerly feature is coming into view. The
lack of a large bright southern polar cap in these maps is
most probably due to the very small change in aspect
angle from 1981 to 1986 which has the effect of inhibiting
even large axially symmetric features from being recog-
nized. Noise in the measurements as well as “‘competi-
tion” with changes near the northern pole conspire to
further mask the presence of the bright southern re-
gion—which we believe is well determined to exist on
the basis of past work, and in particular on the mutual
event data,

Pluto lightcurves have been measured with a 2.7-m tele-
scope (Binzel and Mutholland 1984) and the 1986
lightcurve {Buie and Tholen 1989) was acquired with the
University of Hawaii 2.24-m telescope; the latter appears
to be the best filled-in rotational phase lightcurve. The
lightcurves in the 1980s were sufficiently close to each
other in aspect, enabling Burwitz e¢ al. (1991) to merge
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lightcurves spanning 1982—1990 for their 1D deconvolu-
tion image; they assumed a 90° aspect and showed only
longitudinal variations. (Their tabulated rotational
lightcurves have yet to be published, one of which was
acquired in 1988 with a 2.2-m telescope.) It is interesting
1o note that from the mutual event lightcurves Burwitz
et al. (1991) obtained a dark northern polar cap in contra-
distinction to the other published models. They also ad-
vance the view that the secular changes in Pluto’s bright-
ness, as discussed by Stern er al. (1988), may explain
these differences.

Young and Binzel (1993) map the sub-Charon hemi-
sphere of Pluto utilizing only mutual event data, whereas
Buie ¢t al. (1992) utilize both mutual event data and rota-
tional lightcurves to map the entire surfaces of both Pluto
and Charon. In the Buie et al. (1992) study, which accom-
plished the inversions with a maximum entropy technique
(Skilling and Bryan 1984), there are obvious artifacts in
the image and apparent feature correlation between the
sub-Charon hemisphere of Pluto and the sub-Plito hemi-
sphere of Charon. The sub-Charon hemisphere of Pluto
appears to be the “‘negative,”” or complement, of the sub-
Pluto hemisphere of Charon, It is difficult to believe that
such features can be real; Buie er af. (1993) may wish
to consider performing inversions assuming a uniform
Charon (until good independent Charon lightcurve mea-
surements are available, though these data will be re-
stricted in aspect angle coverage). Consequently, caution
must be exercised concerning the detailed interpretation
of the maximum entropy reconstructed surface map be-
yond hemispheric global variations such as a brighter
southern polar region. Buie er al. (1992) state that the
sub-Charon hemisphere of Pluto is well constrained by
the mutual event data but that the anti-Charen hemisphere
is poorly constrained. We argue below that this should
not be the case in a unified mathematical treatment that
coalesces mutual event and rotational lightcurves together
in a formalism with a common object vector o; there
are constraints imposed by both the mutual event and
rotational lightcurves on the anti-Charon hemisphere of
Pluto. Further, highly artificial multiple-spot model simu-
lations as used by Buie et al. (1992) to estimate surface
map resolution have particular attributes that do not lend
well as a diagnostic test of reconstruction sensitivity to
the inversion of noisy data. This is discussed below.

Images from the 1970s and 1980s Lightcurves

Images were generated using the 1975, 1981, and 1986
lightcurves. Figure 4 (top) shows the spherical surface
map and (bottom) the Mercator projection map. Combin-
ing the 1980 and 1981 lightcurves together yields a map
that is almost identical to this map. Extensive southern
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and northern polar caps appear along with albedo varia-
tions elsewhere on the planet. The diagonal structures
seen in Fig. 4, exhibiting a bilateral reflection symmetry,
are artifacts arising from the poor rotational phase sam-
pling of the 1975 lightcurve. The southern polar cap arises
because the mean brightness level of the 1975 lightcurve
is greater than both of the 1980s lightcurves, but insuffi-
cient to drive the entire southern hemisphere into a large
and uniform sea of high albedo. The sub-Charon hemi-
sphere at 1/4 rotational phase (top, right) in Fig. 4 has a
southern polar region more in concert with the Buie ef
al. (1992) and Young and Binzel (1993) images though
there are disparities in the central regions of this herni-
sphere,

Images from the 1954-1986 Lightcurves

Next we utilize the lightcurves measured in 1954, 1964,
1980, and 1986 and the image is shown in Fig. Sa. The
rms lightcurve error for this map using A = 0.0005is & =
0.0600; with A = 0.0 this reduces to ¢ = 0.0470. The
latter value is smaller because without any smoothing the
inversion fits the gross noise features in the lightcurves
{particularly for 1954); however, the reconstruction of
Fig. 5a remains essentially the same though the transition
from light to dark regions is more more abrupt, i.e., the
edges are sharper. As predicted in Section V the inver-
sions that make usec of earlier and later epoch lightcurves
will {a) endeavor to squash the lightcurve variations into
a tight equatorial band, {b) produce a very extensive and
bright southern polar cap, (c) also generate an extensive
and bright northern polar cap, and (d) cannot fit the
lighteurves to being even remotely close to the noise level
in the data. This last part explains why the lightcurve
variations are caused by a narrow latitudinal equatorial
band and exhibit very high contrast. To get the needed
amplitude variations the albedo in the equatorial belt is
close to zero and presented as a longitudinally stretched
out "V’ and A’ artifact structure. It is highly unlikely
that the map in Fig. 5a depicts the true surface albedo
map of Pluto; rather, it demonstrates what MLI yields
when inconsistent data is furnished. Further quantitative
evidence is shown by examining the residuals in Fig. 5b.
The 1954 residuals are significantly above the zero mean
level that would indicate that the fit was within the noise
in the data. Note further that the mean 1986 residual is
positive while the 1981 residual is negative. In other
words, the reconstructed object cannot reconcile the
brightening of Pluto prior to 1981 with the brightening
that occurred after 1981.

To support this observation we generated four addi-
tional reconstructions and examined their rms lightcurve
errors. The first used only 1954 and 1964; this map sup-
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FIG. 4. (Top}) Spherical map using the 1975, 1981, and 1986
lightcurves. Bright northern and southern polar regions appear because
both the 1986 and 1975 lightcurves have a mean brightness greater than
then 1981 lightcurve. (Bottom) Mercator map representation.

ported our qualitative inferences of the previous section
whereby a very bright southern polar region appeared
with a corrugated dark band generally above the equator.
Then we generated a reconstruction using the 1954, 1964,
and 1975 lightcurves, followed by 1954, 1964, 1975 and
the combined 1980 and 1981 lightcurves, followed by a
reconstruction using all these plus the 1986 lightcurve.
After 10,000 iterations the rms lightcurve errors are 0.0237
for 1954 and 1964; 0.0475 for 1954, 1964, and 1975; 0.0488
for 1954, 1964, 1975, and the merged 1980 and 1981
lightcurve; to 0.0760 for 1954, 1964, 1975, the merged
1980 and 1981 lightcurve, and 1986. The rms lightcurve
error increases as lightcurves that span a greater interval
between 1954 and 1986 are used. The four reconstructions
are shown in Fig. 5¢. The 1954 and 1964 combination can
be reasonably fitted though the reconstruction cannot in-
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FIG. 5a. (Top) Spherical map using the 1954, 1964, 1981, and 1986
lightcurves. (Bottom) Mercator map representation.

troduce enough contrast to fit these two lightcurves to
withinthe noiselevelinthe data. Whenthelightcurves later
than 1964 were incorporated a brighter northern polar re-
gion developed (which is fully out of view for the top map).
When all five lightcurves are used the rms lightcurve error
is the greatest because each lightcurve, as well as the mean
brightness level, cannot be fit well. This is the quantitative
basis for our conclusion that Pluto’s surface albedo distri-
bution has evolved over the 1954 to 1986 time frame.
There may always be questions about the state of
Pluto’s surface prior to the mutuai event season given the
quality and paucity of the data. Future questions can be
answered only with the acquisition of consistent high-
quality data sets closely space in time and with good
rotational coverage. Were such data available from past
measurements it may have been possible to create a series
of snapshots showing the change in Pluto from a bright,
frost-covered ball (1954-1964), through the gradual expo-
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sure of the dark layers (1972-1975), to the images shown
here (1980-1986) of a relatively dark object with isolated
remnants of frost.

OBJECT ERROR AND EIGENIMAGES

Terminology and Approach

We have done numerical experiments to develop an
estimate, qualitatively, of the error in our reconstructed
Pluto images. We outline the procedure here, for com-
pleteness sake, and then offer an opinion of the inherent
risks in doing this with an unknown object utilizing MLI
or any other inversion method. Although there is no tech-
nique known to the authors to estimate the true rms object
error of the images shown in Figs. 3-5, without an actual
resolved image of the planet, we have observed that the
rms lightcurve error for a variety of simulated objects
appears to be consistently and approximately log-linearly
correlated with the rms object error as a function of itera-
tion value. As the number of iterations increases the loga-
rithms of both the rms object error and the rms lightcurve
error diminish in a morg-or-less linear manner.

Define the rms object error, to be the rms error over
all surface elements between an object and its reconstruc-
tion. The rms lightcurve error is defined as the rms error
between all points in the lightcurves associated with the
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FIG. Sb. Residuals between the lightcurve fit obtained by using MLI
and the four lightcurve data sets that were used in the reconstruction.
Here * is the residual for the 1954 lightcurve, x the residual for the 1981
lightcurve, + the residual for the 1981 lightcurve, and o the residual for
the 1986 lightcurve. The 1954 residuals are the largest ([0, 7] normalized
disk-integrated flux units) with a mean level far above zero; this indicates
that the MLI fit could not approach the noise level in the data. Note
further that the mean 1981 residual is negative while the mean 1986
residual is positive. This arises because the reconstruction could not
accommodate the brightening that Pluto exhibited since 1981.
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FIG. 5¢c. Mercator maps for 1954 and 1964 (top), 1954, 1964, and
1975 (second from top), 1954, 1964, 1975, and 1980 merged with 1981
(third from top), and 1954, 1564, 1973, 1980 merged with 1981 and 1986
(bottom). For the top map all latitudes above 36° north remain at the
initial albedo value of 0.6 because they are out of view during the 1954
and 1964 epochs. A smaller polar region similarly exists in the other
maps. Reconstructions that use the 1954 lightcurve all demonstrate a
very large and bright southern polar region.

original object and the reconstructed lightcurves derived
from the reconstructed object. In the case of a simulated
object all of these quantities are a priori known; this is
not the case for a real object such as Pluto.

The technique for Plto proceeds as follows, First cre-
ate an object, which may be a variant of the reconstructed
image of Pluto, using the same M and N. Then synthesize
iwo lightcurves from this model at the equivalent J
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lightcurve aspect angles. Next, invert these J lightcurves
using the MLI process, using the same acceleration and
smoothing constants that are used in the generation of
the reconstructed image until the rms lightcurve error
reaches convergence or some final cutoff value. The rms
object error (beiween the reconstructed image and the
model object) can be plotted against the rms lightcurve
error (between the reconstructed lightcurves and model
lightcurves), and is a parametric function of the iteration
number. For our simulation experiment the resulting
curve monotonically increased with the logarithm of one
rms error quantity plotted against the other rms error
guantity, though the curve was not perfectly linear. In
other words, as, for example, the rms lightcurve error
diminished the corresponding rms object error also dimin-
ished. Since the model object had lightcurves that resem-
bled those of the measured Pluto lightcurves, we may be
led to conclude similarly that as the rms error between
the measured Pluto lightcurves and reconstructed object
lightcurves diminishes that the rms error between our
Pluto reconstructed image and the true albedo surface
map of Pluto also diminishes as the iterative inversion
process converges. Such an approach can lead to the
dangerous assessment that the inversions are vielding im-
ages that are, in some sense, correct, when in actuality
they are completely wrong.

The Eigenimage

A model object that is our starting point was created
from a set of lightcurves (Fig. 6, top) and then altered by
slightly enlarging the northern polar region (Fig. 6, cen-
ter). The starting model object was formed from an inver-
sion that used three Pluto lightcurves, i.e., 1981, 1982,
and 1986, which were rendered to be slightly inconsistent
when the choice for m, in Eq. (10) was made (they differed
from each other and from our adopted choice of m, =
14,757). Consequently, this object has lightcurves with
profiles very similar to thase of Pluto, though the relative
mean levels are different than the actual Pluto lightcurves.
Three M = 40 point noiseless lightcurves were generated
from the object in Fig. 6 (top} with aspect angles o, =
80°, o, = 75°, and a; = 70°, and all three were then used
in the reconstruction; the aspect angles are assumed
known a priori. The reconstructed image generated using
MLIis shown in Fig. 6 (center). The iterations proceeded
until the rms error between the model object lightcurve
and reconstructed object lightcurve, defined by Eq. (7),
reached £ = 0.0010.

Were the original object formed entirely from random
“brushstrokes’” one can be pieased at the quality of the
reconstruction shown in Fig. 6 (bottom). If this image
were shown as an example of the efficacy of MLI to an
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FIG. 6.

(Top) The original eigenimage ohject, generated from incon-
sistent Pluto lightcurves. {Center) The slightly modified eigenimage;
most changes were made in the polar region. (Bottom) The reconstructed
eigenimage map using two lightcurves generated from the center map.
In general this reconstruction is an excellent rendition of the original
obiect (top or center objects).

uninformed observer, a totally incorrect conclusion as to
the capability of MLI would be drawn. It is risky to con-
clude the MLIL works spectacularly based on this, or a
similarly developed, simulation. Similar statements can
be made about any inversion techmique. Because the
model object was basically fashioned from a set of given
lightcurves (with very slight changes} we have used an ob-
Jject that is in the neighborhood of an eigenimage of the
system matrix H. Inother words, any reconstructed object,
regardless of the input lightcurves, is an eigenimage if the
same reconstructed object lightcurves are used as the in-
putsto the inversion process. Since we began with a model
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object that was derived from our original Pluto reconstruc-
tion, to enable us to have model object lightcurves very
similar in form to the actual Pluto lightcurves, it is not sur-
prising that our simulated model object was reconstructed
so well.

Another difficulty in estimating the rms error between
the reconstrucied object and true planet surface map is
that, at least in the absence of [0,1] albedo boundedness
constraints and smoothing, it can easily be shown (Har-
mon et al. 1993) that inversions exist that fit the noiseless
lightcurves to arbitrarily high precision but which have a
very large rms object error, particularly as we increase
Nand M. In the presence of albedo positivity or bounded-
ness constraints which forces more continuous or
smoother solutions to be accepted this problem is much
less severe. The unconstrained iterations in Eq. (6a) will
converge to the least-squares inverse solution; con-
strained solutions will generally converge to other, per-
haps distant, regions in the solution space. There may
exist other, less smooth, solutions that replicate the
lightcurve data and satisfy the imposed constraints, i.e.,
albedo constrained within the unit interval [0,1] for our sim-
ulations. If it can be proved that such other solutions exist
in some sense close to the reconstruction, i.e., within some
small neighborhood of the solution point corresponding to
the constrained iterative inversion, then it may be possible
that the rms object error can be functionally (or monotoni-
cally) and hence quantitatively correlated as the iterative
solution converges with the true rms lightcurve error.

SIMULATIONS AND INFERRING SURFACE RESOLUTION

Highly Artificial Multiple Spot Model

Figure 7a is a Mercator projection map of a simulated
object with a background albedo of 1.0 that has four spots

N N | [
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FIG. 7a. The 12-spot artificial object. Each spot has unity albedo

and extends over a 2 X 2 pixel region; the background albedo is set at
0.1.
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comprising 2 X 2 surface pixel regions with zero albedo
in each of three latitudinal bands. The central band of
spots is out of phase longitudinally with the mid-latitudinal
band of spots. This is a highly structured object analogous
to that used by Buie er al. (1992) in their simulation,
though we ignore generating a simultaneous surface map
for Charon. This multispot model is not an eigenvector
of the matrix H. The noiseless lightcurves are shown in
Fig. 7b (top) for four aspect angles consisting of o = 93°,
o= 103°, & = 134°, and @ = 144° in analogy with the 1986,
1981, 1964, and 1954 Pluto aspect angles, respectively. In
7b (center) is the equivalent set of four lightcurves de-
graded with modest levels of Gaussian-distributed random
noise, while Fig. 7b (bottom) shows the high noise level
lightcurves.

Figure 8a shows the MLI reconstructions using the
notseless lightcurves with from one to all four lightcurves
used in the reconstruction. Figure 8b shows the recon-
structions for the moderately noisy lightcurves, while Fig-
ure 8c presents the reconstructions using the high noise
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FIG. Tb. (Top) The four noiseless lightcurves generated from the

12-spot object. Here * has the same aspect as 1954, x as 1964, + as
1981, and o as 1986. (Center) The same four lightcurves with moderate
Gaussian noise added to each lightcurve. (Bottom) The same four
lightcurves with substantially more Gaussian noise added to each
lightcurve. The vertical scale is in disk-integrated flux units norimalized
to the interval [0, 7).
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level lightcurves. The single lightcurve reconstructions
(bottom image) use the o = 134° lightcurve, the two-
lightcurve reconstructions use the & = 93° and @ = 134°
lightcurves, and the fourth reconstruction (top image)
uses all four lightcurves. For all the noisy lightcurves we
used a smoothing parameter of A = 0.00025 and for all
cases we performed 125,000 iterations. Such a large num-
ber of iterations was needed most for the four-lightcurve
case, but also was required because of the sinusoidal
nature of the lightcurves {evident in Fig. 7) caused by the
azimuthal spot periodicity. Although the rms lightcurve
error for the noiseless lightcurves asymptotically ap-
proaches zero in the limit of infinite iterations, for our
chosen cutoff the rms error for the four lightcurve case
was approximately 0.13% and approximately 0.02% when
one lightcurve was used.

Consider the results in Fig. 8a, and in particular the
case where only two lightcurves consisting of 80 data
paints are used to reconstruct 1000 surface elements. This
does a very reasonable job of specifying where all the
spots are localized, though they are slightly blurred out
and the dark spots are not at zero albedo as in the original
object. Part of the reason for this, perhaps surprising, feat
is that the object is so highly artificial, and the multispot
object produces many sinusoidal ripples in the lightcurves
as the spots move in and out of view, Using three or four
lightcurves rendered reconstructions that appear to differ
little from when two lightcurves were used. Because we
cut off the iteration process at 125,000, the four-lightcurve
reconstruction demonstrates slightly poorer quality than
the two- or three-lightcurve case because of its slower
rate of convergence; the speed of canvergence diminishes
with increasing numbers of lightcurves. Also, the use of
a single lightcurve partially recovers the equatorial spots
and southern latitude spots and shows an indication of
the mid-latitudinal northern spots, which are almost out
of view for the chosen aspect angle. The four-lightcurve
case took about 1 day of processing time on a 486 33-
Mhz PC system.

Figure 8b shows the corresponding four reconstructions
for the moderately noised lightcurves. These reconstruc-
tions localize the spot positions well though the spots
themselves are of slightly less contrast and a little more
blurred out. The reason for the good localization lies in
the use of a multispot object itself which give rise to high-
frequency sine-wave type lightcurves. Because the noise
is of higher frequency but lower amplitude and superim-
posed on the low-frequency high-amplitude spot-induced
signal, it will have little effect on the reconstruction until
the primary signal is fitted. The sinusoidal structure alone
reveals the presence of localized spots on the surface; the
model is so highly artificial, in fact, that drawing conclu-
sions about general performance characteristics (such as
surface resolution) cannot be realized.
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FIG. 8a. Reconstructions of the 12-spot object using the noiseless
lightcurves. The top map used all four lightcurves; the. second map used
three lightcurves with aspects angles of 93°, 103°, and 134°; the third
map uses two lightcurves with aspect angles of 93° and 134°; the bottom
map uses a single lightcurve with aspect angle of 134°,

For the high-noise lightcurves shown in Fig. 7d, the
reconstructions in Fig. 8c continue to localize the spot
features, though the spot shapes have diminished in qual-
ity from the moderate noise case. The noise amplitude
is now comparable to the spot signal amplitude in the
lightcurves, Clearly, the very artificial nature of this simu-
lation can lead to a highly misleading estimate of the
resolution of an inversion technique because a similar
noise level in the lightcurves of a more realistic object
model will lead to reconstructions bearing no similarity
at all to the original object.

A multispot model was utilized by Buie et al. (1992)
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where they inferred the surface resolition attainable over
part of the mapped surface for the maximum entropy
method. From the present investigations it appears that
any conclusion drawn about reconstructed surface resolu-
tions from multispot models must be reexamined. The
attainable surface resolution that can be obtained with
inversion techniques such as MLI will be object as well
as data dependent. The former case arises because many
different surface configurations will fit a given lightcurve,
When more than one lightcurve is used at different as-
pects, solar phase angles, or color-dependent limb darken-
ing effects, the ill-posedness diminishes and the resolution
attainable becomes more data dependent (Harmon 1995).
The use of positivity and smoothing narrows the accept-

FIG. 8b.

Reconstructions using the moderately noisy lightcurves.
The maps are oriented identicaily to those in Fig. 8a. All 12 spots are
recovered in this map.
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able set of solutions to uniqueness so that resolution may
be definable in terms of the ‘“‘modes’’ that can be recon-
structed; these can be spherical harmonics. This is a vital
topic for future research because to reach a given surface
resolution imposes conditions on the quality and quantity
of the measured data that must be met (Harmon 1994).

FPlausibly Realistic Object

Figure 9a shows a more continuous simulated object
that is plausibly realistic. It was fabricated using random
“brushstrokes” and subsequent smoothing to fully avoid

i
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FIG. 8¢c. Reconstructions using the high-noise lightcurves. The maps
are oriented identically to those in Fig. Ba. Note that the 12 spots,
though slightly blurred out, are still evident. This indicates that the
highly artificial multispot simulations are a misleading indicator of spatial
surface resolution for lightcurve inversion procedures.
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FIG. 9. (a) Plausibly realistic simulated object. (b) {Top) The noise-

less lightcurves with aspect angles corresponding to Pluto for 1954 (8),
1964 (x}, 1981 (+)}, and 1986 {0}. (Bottom} The lightcurves with varying
degress of Gaussian random noise added.

the possibility of it being an eigenimage. Figure 9b (top)
shows the four noiseless lightcurves for this object; they
correspond to the four Pluto aspect angles used in the
previous multispot simulation. Figure 9b (bottom) shows
these lighteurves degraded with different levels of noise.
Figure 10a shows the ensemble of reconstructions using
from one to all four noise-free lightcurves simultaneously;
the images are shown analogously to the above multispot
simulations. Figure 10b show the reconstructions for the
noisy lightcurves. The subjective interpretation from
these results is that in the noiseless case the three- and
the four-lightcurve reconstructions do a remarkably good
job at recovering the major prominent features. The two
large crater-type regions are recovered as well as the
locations for the boundaries of the various other features
though the dark spot at rotational phase 0.8 has not been
recovered. When noise is added the finer features are lost,
though there remain similarities to the original object.
The sect of aspect angles used in these simulations are
chosen to reflect those of Pluto. Simulated objects—and
presumably real objects too—will be better reconstructed



IMAGES OF PLUTO

FIG. 10a. Series of four reconstructions of the object in Fig, 9a using
between one and four noiseless lightcurves. The top reconstruction
uses one lightcurve with & = 134°; the second reconstruction uses two
lightcurves with & = 93° and o = 134°; the third recomstruction uses
three lightcurves with & = 93°, @ = 134°, and & = 103% the bottom
reconstruction uses all four lightcurves.

were the lightcurves measured over a greater range of
aspect angles and perhaps if more lightcurves were avail-
able. Though our inferences from simulations indicates
that little advantage is gained as the number of lightcurves
is simply increased beyond a few. That is, the quality of
the reconstructions appears to be a stronger function of
the sampling and spacing over the range in aspect angle
than of number of lightcurves, J, over a given range of
aspect angles. Also, as the number of lightcurves J in-
creases the convergence rate dramatically slows down
and more computer time is needed to get images with an
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identical rms lightcurve error {o a reconstruction with
fewer lightcurves. This is a drawback of the simple Jacobi
method that can be overcome using more sophisticated
iterative techmniques such as conjugate gradient descent.

Image Quality

It is important to distinguish between making qualita-
tive or subjective versus quantitative judgments of image
quality based on a handful of simulations. The “*standard™
scenario consists of showing results utilizing enbhance-
ments, reconstructions or inversions, deconvelutions,
etc., of the image and offers the audience a subjective
assessment of the performance of the technique. Such
qualitative characterizations are necessarily biased be-

FIG. 10b. Reconstructions using the noisy lightcurves, with aspect
angles and number of lightcurves as indicated in Fig. 10a.
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FIG. 11. Predicted Pluto lightcurves for 2000 (x, o = 84%), 2010 (+,

a = 78%, and 2020 (0, « = 72°) generated using the reconstructed surface
map in Fig. 3b. The 1986 (*, a = 93°) lightcurve from this reconstruction
is shown for comparison,

cause of the nature of the human observer. Barrett (1990)
offers a quantitative treatment concerning the objective
assessment of image quality, though it appears to be a
difficult process. We are perhaps also guilty of pursuing
the purely subjective approach, though part of our effort
has been to verify inconsistencies in the data and thus
furnish evidence of a nonstatic surface. The motivation
behind the recognition of the importance of eigenimages
was based on numerical experiments to guantitatively
estimate rms object error through a correlation with rms
lightcurve errors; this turned out to be an incorrect ap-
proach. Error propagator maps can easily be misunder-
stood because they indicate only where the data are weak
(or excessively noisy) and the degree of mathematical
constraint in reconstructing pixels over the planet’s sur-
face. These error maps say little, if anything, in regard
to how close the reconstructed maps agree with the actual
surface of Pluto.

PREDICTED LIGHTCURVES AND SURFACE EVOLUTION

We can offer predictions of how Pluto’s lightcurves will
evolve under the static surface assumption. We choose
the snapshot reconstruction in Fig. 3b for our predictions
because of the quality of the data used and our assessment
of the reconstruction being reasonably consistent with
the sub-Charon maps shown in Young and Binzel (1993,
Fig. 8).

Figure 11 shows the predicted lightcurves using this
reconstruction for the years 2000, 2010, and 2020, with
the 1986 lightcurve (as gencrated from the reconstruction)
as a reference. These choices assumed a linear change in
aspect angle of Aa = 0.627°/year. The vertical scale is
disk-integrated surface brightness normalized to 7. Note
that the lightcurves increase in brightness with little
change in the overall structure. The peak position shifts
slightly in rotational phase and a minimum develops near
zero rotational phase. The “‘shelf”’ structure remains
more-or-less intact, though perhaps is slightly more pro-
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nounced. When we did a similar analysis using the object
in Figs. 4a and 4b—the map using 1975, 1981, and
1986~—the *‘shelf”’ feature slowly blended away with time.

Pluto is presently moving away from the Sun after hav-
ing passed perihelion in 1989 so the solar insolation is
diminishing with, presumably, a resultant cooling of the
atmosphere and as Stern et af. (1988) suggests the methane
will begin to precipitate out of the atmosphere and cover
Phuto’s surface in some uneven pattern and therefore con-
vert Pluto into a bright snowball again. The brightening
in our predicted lightcurves is caused by the northern
polar region moving further into view. One might suspect
that methane frosts will even further enhance the surface
albedo of Pluto’s surface in excess of that predicted in Fig.
11. As the methane frost covering proceeds, the amplitude
variation will probably diminish for two reasons: (1) the
aspect angle diminishes so that the northern polar region
persists in view over all rotational phases analogous to
the 1954 situation when the southern polar region was
persistently in view and (2) the frost formation will
brighten up those areas that are dark and hence diminish
their contribution to the lightcurve amplitude variations.
In Young and Binzel (1993) and Binzel (1992) a physical
explanation of the bright southern polar region is put for-
ward based on the requirement to maintain a constant
global temperature through the release of energy via the
latent heat of condensation while the southern polar area
recetves no solar insolation. Consequently, the northern
polar region may either remain static, or may actually
diminish in size though Pluto is receding from the Sun,
In the former case this may be attributable to the frost
formation occurring primarily in the southern regions that
are getting no solar insolation. Pluto is still close to perihe-
lion for the next ~20-30 years, so the reduction in solar
insolation may be such that what frosts form or snow-like
precipitation from the atmosphere accurs (atmospheric
freezeoutj will take place near the south pole. In this case
our lightcurve predictions may be reliable as the static
surface assumption is more-or-less valid over most of the
surface in view. In the latter case the north polar region
may diminish in extent precisely because Pluto is still in
the vicinity of perihelion and given the approximately one
decade thermal lag time the northern frosts will sublimate
perhaps at the same time that the southern polar region
receives its frost covering. In other words, Pluto’s atmo-
sphere may be-undergoing some rather complex dynamics
in those epochs before and after its passage through peri-
helion. The ability to obtain and properly interpret, i.e.,
invert, the various multicolor lightcurves is therefore of
¢xtreme importance and significance for correctly ironing
out the details of the dynamic globa) properties of atmo-
spheric transport on Pluto.

We have adopted the view of Stern er al. (1988) that
the reason for a dynamically changing surface is due to
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the sublimation, mobility, and freczeout of atmospheric
methane. However, recent observations of Owen et al.
(1993) indicate that the primary surface ice and atmo-
spheric constituent on Pluto is N, and is approximately
50 times more abundant than CH, and CO. Owen er al.
(1993) also point out that the surface pressure and temper-
ature of Pluto may be near the triple point of N,, which
implies that there may be some very complex surface
dynamics in regard to the mixing and distribution of these
volatile ices as Pluto passes through its perihelion passage
when solar insolation is the greatest and present over the
entire disk of the planet.

INCORPORATING MUTUAL EVENTS INTO
THE FORMALISM

Since Eq. (3) is linear it can be used in tandem with
other linear estimation procedures, such as the inversion
of mutual event lightcurves (Brinkmann 1976}, if the same
polyhedral surface discretization and physical basis is
used for the object vector o. The unified rotational and
mutual event lightcurve formulation (Wild 1993, unpub-
lished notes) is summarized here as we feel it important
to let others be aware of this approach. The mutual event
data is concatenated to the column data vector d, to get
the augmented vector d*,

d
oofi]
dyve

where the subscript “‘RL”’ refers to rotational lightcurves
and ““ME’”’ to mutual event lightcurves. The mutual event
lightcurve data is sampled with an incremental motion of
Charon (and its shadow) of one sub-Earth longitudinal
pixel, similar to that used in MLI, (the usage of “*sub-
Earth™ indicates a pixel size corresponding to the largest
projected longitudinal extent), and as finely and irregu-
larly as is desired recognizing below that elements in the
transfer matrix H may be fractional facet areas. An ade-
quately fine surface discretization can be used to offset
undesired partial pixel obscuration effects around the limb
of Charon and its shadow projected upon Pluto. The aug-
mented matrix, designated as H*, consists of the rota-
tional version as given by Eq. {4¢), followed by rows that
have entries that are zero for all surface patches on the
anti-Charon hemisphere of Pluto, zero for those patches
obscured by Charon and its shadow, and the same §;
for those patches in full view, and some fraction of this
projected area for pixels that are only partially obscured
for well sampled data in the mutual event phase domain.
The matrix H* has the form

[
Hyz

{12a)

(12b)
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Each additionzal row of H corresponds to a specific posi-
tion of Charon relative to Pluto. The uniform illumination
contribution from Charon itself is included via the mean
Pluto magnitude preceding and following the mutual event
lightcurve diminution, i.e., the 0.167 (or other adopted
value, depending on the color index) magnitude factor
that we subtracted out for our analysis is automatically
included in the mutual event data.

The structure of H* with d* furnish constraints upon
o0, i.e., the nullity of H* is smaller than the nullity of H.
The rotational lightcurves can be characterized as the
output of an integrating filter (see Eq. (11)), whereas the
muotual event lightcurves are the output of a differentiation
filter. For instance, as Young and Binzel {1993) noted,
albedo variations present on Charon will have little effect
on the mutual event lightcurve because it is a constant
background during the interval of the eclipses. That is,
from one measurement to the next small portions of
Pluto’s surface are covered and then uncovered, while
most of the surface is a constant background source. For
the rotational lightcurves the entire surface is modulated
with respect to the template sphere; this is not the case
with the mutual events. There are fundamental differences
between how rotational and mutual event lightcurves are
formed, so the simultaneous inversion of these two data
sets will furnish the best possible snapshot images for
Pluto in the 1980s. Interestingly, the mutual event
lightcurves will also constrain the anti-Charon hemisphere
of Pluto because the rotational lightcurves integrate over
projected disks for those rotational phases that show only
portions of the sub-Charon hemisphere. This constraint
carries over to the anti-Charon hemisphere of Pluto. Con-
sequently, the “‘reality”” of the entire surface map should
improve for a snapshot image that incorporates mutual
events as well as rotational lightcurves acquired during
the 1980s.

CONCLUSIONS

Pluto represents an almost ideal application of matrix
lightcurve inversion. This is because it is a spherical body
with a known pole orientation, inferred from the orbit of
Charon, so the aspect angle is well established throughout
its orbit. Additionally, it has a large obliquity and its solar
phase angie is negligible (=1.9%) whereby the lightcurves
can be reduced to a common viewing geometry with Pluio
always at opposition so that the geometric scatiering as-
sumption may be valid. Also, of course, Plute demon-
strates intriguing lightcurve variations, which have
changed substantially since they were first measured in
1934, Few of these characteristics hold true for most aster-
oids or satellites in the Solar System.

We assumed that Charon is featureless and is therefore
a removable background for all lightcurves. Recent work
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by Olkin et al. (1993} and Buie and Shriver (1994) support
this assertion, though small albedo variations on Charon
witl not affect our conclusion that Pluto’s surface has
undergone evolutionary changes from 1954 10 1986. Color-
dependent photometry, adaptive-optics-compensated im-
agery, and HST observations will enable the individual
Phuto-Charon lightcurves to be decoupled and will insti-
gate a new hierarchy of reconstructions. Continuing ob-
servations will be invaluable for monitoring active volatile
transport over the surface through and beyond Pluto’s
perihelion passage.

Spapshot images of Pluto can be attained utilizing
lightcurves acquired several years apart, corresponding
to small changes (~10°) in the aspect angle, though reliable
reconstructions require the highest possible data quality.
Otherwise there is a risk of losing axially symmetric fea-
tures because of noise masking the small changes in the
orbital lightcurve. However, it is partically impossible to
acquire densely sampled lightcurves over the full rota-
tional phase during any single observing session at a large-
aperture telescope to attain the needed precision for snap-
shot images using lightcurves taken just years apart. The
motivation leading to snapshot reconstructions originated
because of the inconsistency between lightcurves over
1954 to 1986, and because the lightcurves from the 1980s
were deemed of satisfactory quality for demonstrating the
principle. Inversions that combine the 1980s data with
data from the 1970s [eads to unreal-appearing maps proba-
bly induced by the high noise level and large gaps in the
1970s rotational phase coverage.

The matrix formalism for lightcurve inversion enables
use of the many tools of ill-posed estimation theory for
performing the inversions; we choose to use a simple
constrained iterative technique. This is a vast body of
literature on regularization theory applied to ill-posed in-
verse problems analogous to that treated here (see, for
example, Morozov 1984, Root 1987, Tikhonov and
Goncharsky 1987, Turchin et al. 1971, Twomey 1963,
1977). MLI is casily generalized to accommodate wave-
length-dependent limb darkening effects (Harmon, un-
published communication, 1993, Wild er al. 1994) and
more general surface scattering laws than geometric scat-
tering.

There is a substantial bady of existing Phito and Charon
lightcurve data which embodies multicolor rotational and
mutuwal event photometry and more recently groundbased
and HST-acquired separated Pluto and Charon rotational
lightcurves (Binzel 1993, personal communication). The
reduction and organization of these data is an ongoing
task, and once this database becomes available to the
greater community revised surface maps should be devel-
oped using the many technigues available. Only in this
manner can increased confidence in some of the more
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salient features on the surface be obtained and confidently
be used for surface—atmospheric interaction studies.

It is desirable to acquire high-quality lightcurves of
Plute and Charen spaced ~2--3 years apart to enable the
generation of snapshot images. Dynamical variations of
the planet’s surface from atmospheric transport of vola-
tiles can then be better understood; these can be consoli-
dated with atmospheric and meteorological models, which
in turn are corroborated by stellar occultation measure-
ments, For a minuscule fraction of the cost of a space
mission to Pluto, HST or large-aperture telescope time
periodically dedicated to acquiring multicolor full rota-
tional phase coverage of Pluto and Charon will be of
inestimable scientific value to future researchers at-
tempting to reconstruct Pluto’s evolving surface and at-
mosphere. These observations will be particularly critical
because Pluto’s aspect angle has recently passed below
the 90° point, and these data will shed light on the evolu-
tion of the postulated bright southern polar region. Fur-
thermore, the surface maps will enable space mission
planners to optimize spacecrafl reconnaissance trajector-
ies to maximize scientific return (Stern 1993). Coordinated
observational programs should be seriously considered
by members of the Pluto community as it will be the only
way to get moderately high-resolution images for many
years to come.
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