Calculation of Cell Areas on an Oblate Planet



Purpose: To calculate the cell areas on an oblate spheroidal planet. A ``cell'' is defined as a region bounded by two meridians of longitude and two meridians of latitude. It is approximately a rectangular patch (except for cells near the two poles, which are spherical triangles). To better approximation, a cell is a trapezoid. Here, we rigorously derive the area.

We define f as the flattening of the sphere,
f =  a - b

a
(1)
where a and b are the equatorial and polar radii, respectively. Note a > b for an oblate spheroid. For Earth, f = 0.00335364; for Mars, f = 0.00647630.

We begin with the definition of surface area in polar coordinates,
Area = ó
õ
l2

l1 
ó
õ
b2

b1 
r2 cosb  db dl
(2)
where l and b represent the longitude and latitude, respectively. For the sake of compactness, we do not carry the limits on the integrals in subsequent equations. However, the definite integrals remain to be evaluated after the dust settles.

The figure of an oblate spheroid is given (to order f2) by,
r = a æ
è
1-fsin2b-  3

8
f2sin2 2b ö
ø
(3)
Substituting (3) into (2) and doing the integration in the l direction gives:
Area = a2 Dl ó
õ
cosb æ
è
1-fsin2b-  3

8
f2sin2 2b ö
ø
æ
è
1-fsin2b-  3

8
f2sin2 2b ö
ø
  db
(4)

= a2 Dl ó
õ
cosb é
ë
1
-fsin2b-  3

8
f2sin2 2b+f2sin4b+  3

8
f3sin2bsin2 2b
-  3

8
f2sin2 2b+  3

8
f3sin2 2bsin2 2b+  9

64
f4sin4 2b ù
û
  db
(5)

= a2 Dl ó
õ
é
ë
cosb
-fsin2bcosb-  3

8
f2sin2 2bcosb+f2sin4bcosb+  3

8
f3sin2bsin2 2bcosb
-  3

8
f2sin2 2bcosb+  3

8
f3sin2 2bsin2 2bcosb+  9

64
f4sin4 2bcosb ù
û
  db
(6)

= a2 Dl ó
õ
é
ë
cosb-
fsin2bcosb-  3

4
f2sin2 2bcosb+f2sin4bcosb+  3

4
f3sin2bsin2 2bcosb
+  9

64
f4sin4 2bcosb ù
û
  db
(7)

= a2 Dl é
ë
sinb
-  f

3
sin3b-  3

4
f2 ó
õ
sin2 2bcosb  db+  f2

5
sin5b
+  3

4
f3 ó
õ
sin2bsin2 2bcosb  db+  9

64
f4 ó
õ
sin4 2bcosb ù
û
  db
(8)

= a2 Dl é
ë
I

æ
è
sinb-  f

3
sin3b+  f2

5
sin5b ö
ø


 
ê
ê
b2

b1 
- II

 3

4
f2 ó
õ
sin2 2bcosb  db


 
+

 3

4
f3 ó
õ
sin2bsin2 2bcosb  db

I
 
II+

 9

64
f4 ó
õ
sin4 2bcosb  db

IV
 
ù
û
(9)
To do the integrals in terms II-IV, note the following trigonometric identities:
sin2q
= 2sinqcosq
sin2 2q
= 4cos2qcos4q = 4(sin2q- sin4q)
(10a-10c)
sin4 2q
= 16(cos4q- 2cos6q+ cos8q) = 16(sin4q-2sin6q+ sin8q)
Term I is self-evident. Examining terms II-IV in turn,

II:
-  3

4
f2 ó
õ
æ
è
16sin4 - 2bsin6b+
sin8b ö
ø
cosb  db
= -  3

4
f2 é
ë
 16

5
sin5b-  2

7
sin7b+  1

9
sin9b ù
û
=-  12

5
f2sin5b+  3

14
f2sin7b-  1

12
f2sin9b ê
ê
b2
b1 
(11)

III:
 3

4
f3 ó
õ
sin2b×16 æ
è
sin4b-
2sin6b+sin8b ö
ø
cosb  db
=12f3 ó
õ
æ
è
sin6b-2sin8b+sin10b ö
ø
cosb  db
=12f3 é
ë
 1

7
sin7b-  2

9
sin9b+  1

11
sin11b ù
û
=  12

7
f3sin7b-  24

9
sin9b+  12

11
f3sin11b ê
ê
b2
b1 
(12)

IV:
 9

64
f4 ó
õ
16 æ
è
sin4b-2sin6b+sin8b ö
ø
cosb  db
=  9

4
f4 ó
õ
sin4bcosb  db-  9

2
f4 ó
õ
sin6bcosb  db+  9

64
f4 ó
õ
sin8bcosb  db
=  9

4
f4  1

5
sin5b-  9

2
f4  1

7
sin7b+  9

64
f4  1

9
sin9b
=  9

20
f4sin5b-  9

14
f4sin7b+  1

64
f4sin9b ê
ê
b2
b1 
(13)


Putting it all together, Eq. (9) becomes:
Area = a2 Dl é
ë
I + II + III + IV ù
û
b2
b1 
(14)
where b1 and b2 indicate the latitude limits to the region of integration.



Now time for the sanity checks:

·
First, in the case of a sphere, f=0, and all terms disappear except the lead term in I :
Areasphere = a2Dlsinb ê
ê
b2
b1 
·
In this case, and for b2=p/2 and b1=-p/2 and Dl = 2p, we wind up with the area of a sphere, 4pa2.
·
Also, in the limiting case of one of the poles, this expression reduces to a2DlDb/2, which is the expected area of the little triangle.
·
Second, in the limit of Dl® 0 and/or Db® 0, Area ® 0.
·
Third, all terms in the final expression are odd, indicating symmetry around the equator, as expected.




          Table of Sample Areas, in [km2]
      

      
latitude [deg]        spheroid        sphere         

      
89.75        3.808761        3.834437       
89.25        11.425984        11.502999       
88.75        19.042372        19.170685       
88.25        26.657368        26.836910       
87.75        34.270416        34.501092       
87.25        41.880961        42.162646       
      
46.25        605.586083        607.693848       
45.75        611.119569        613.210359       
45.25        616.607171        618.680173       
44.75        622.048454        624.102871       
44.25        627.442986        629.478041       
43.75        632.790338        634.805275       
      
31.25        749.956218        751.286874       
30.75        753.937761        755.236626       
30.25        757.861900        759.128863       
29.75        761.728314        762.963290       
29.25        765.536684        766.739614       
28.75        769.286698        770.457548       
      
2.25        878.102361        878.111163       
1.75        878.373461        878.378803       
1.25        878.576806        878.579550       
0.75        878.712379        878.713390       
0.25        878.780168        878.780312       

      

The following IDL procedure evaluates our expression for the case of Mars (a=3397 km):

`^^I= ^I

    `\`= `^^I=
  

SPHEROID_AREA

radius=3397.d0 ; equatorial, in km

f=0.00647630 ; flattening

gs=0.5d0 ; gridsize, in degrees

halfgs=gs/2.d0

outfile='spheroid_area.dat'

openw,unit,outfile,/get_lun

printf,unit,'latitude Area(km2,sphere) Area(km2,spheroid)'

for lat=90-halfgs,-90+halfgs,-gs do begin

top=lat+halfgs & bot=lat-halfgs

area=!dtor*gs*radius2*(dotrig(top,f,gs)-dotrig(bot,f,gs))

sphere_area=!dtor*gs*radius2*(sin(!dtor*top)-sin(!dtor*bot))

printf,unit,lat,area,sphere_area,format='(1x,f6.2,2(3x,f12.6))'

endfor

close,unit

print,'Done. Data written to ',strn(outfile)

DONE:

stop

end

function dotrig,lat,f,gs

f2=f*f & f3=f2*f & f4=f3*f

sinlat=sin(lat*!dtor) & sinlat2=sinlat*sinlat

sinlat3=sinlat3 & sinlat5=sinlat5

sinlat7=sinlat7 & sinlat9=sinlat9

sinlat11=sinlat11

term1=sinlat-(f/3.d0)*sinlat3+(f2/5.d0)*sinlat5

term2=-(12.d0/5.d0)*f2*sinlat5+(13.d0/14.d0)*f2*sinlat7-(f2/12.d0)*sinlat9

term3=(12.d0/7.d0)*f3*sinlat7-(8.d0/3.d0)*f3*sinlat9+(12.d0/11.d0)*f3*sinlat11

term4=(9.d0/20.d0)*f4*sinlat5-(9.d0/14.d0)*f4*sinlat7+(f4/64.d0)*sinlat9

print,term1,term2,term3,term4

return,(term1+term2+term3+term4)

end




File translated from TEX by TTH, version 3.10.
On 30 May 2002, 15:35.