| Course | Title & Description | Instructor |
|---|---|---|
| PTYS 502 |
Analytical and Numerical Modeling in Geosciences (3)Analytical and numerical solutions to partial differential equations and other models widely used in disparate fields of geosciences. Equivalent to: GEOS 502, ECOL 502, MCB 502; GEOS is home department. Course Requisites: MATH 129. Open to advanced undergraduates with strong mathematical backgrounds and consent of instructor and Graduate College. | Pelletier |
| PTYS 503 |
Physics of the Solar System (3)Survey of planetary physics, planetary motions, planetary interiors, geophysics, planetary atmospheres, asteroids, comets, origin of the solar system. Graduate-level requirements include an in-depth research paper on a selected topic and an oral class presentation. This course does not count toward the major requirements in Planetary Sciences. Equivalent to: ASTR 503, GEOS 503, and PHYS 503 (and cross-listed); may be co-convened with PTYS 403. PTYS is home department. PTYS503: Physics of the Solar System (Jokipii) | Jokipii |
| PTYS 510B |
Chemistry of the Solar System (3)PTYS Graduate Core Course. Provides an overview of the gas and ice chemistry in planetary environments including molecular structure, spectroscopy, kinetics. The course describes how these physical processes are manifest in the diverse solar system environments. The instructional level is aimed at beginning graduate students with an adequate background comparable to that obtained from advance undergraduate courses in physics and chemistry. Knowledge of vector calculus and elementary differential equations is assumed. Successful students will be able to understand current research in planetary chemistry and will be well prepared for more detailed studies. | Yelle |
| PTYS 512 |
Planetary Global Tectonics (3)PTYS Graduate Core Course. Application of the physics of solid-state deformation to global tectonics of the terrestrial planets and icy moons of the solar system. Modes of topographic support, isostasy and implications for gravity/topography ratios on one-plate planets. Theory of floating elastic plates as an approximation to the lithosphere. Use of seismic data to determine the interior structure and composition and modes of heat conduction in planets. | Showman |
| PTYS 541B |
Dynamic Metereology (3)Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Graduate-level requirements include a more quantitative and thorough understanding of the subject matter. ATMO is home department. | Ritchie |
| PTYS 542 |
Mars (3)In-depth class about the planet Mars, including origin and evolution, geophysics, geology, atmospheric science, climate change, the search for life, and the history and future of Mars exploration. There will be guest lectures from professors and research scientists with expertise about aspects of Mars. There will be lots of discussion of recent results and scientific controversies about Mars. Graduate-level requirements include the completion of a research project that will be presented in class as well as a report. The research project could be analysis of Mars datasets, a laboratory experiment, or new theoretical modeling. Regular grades are awarded for this course: A B C D E. Prerequisite(s): PTYS 411, Geology of the Solar System is strongly recommended but not required. Identical to: ASTR 542, GEOS 542. May be convened with: PTYS 442. PTYS542: Mars (McEwen) | McEwen |
| PTYS 555 |
Teaching College-Level Astronomy & Planetary Science (1 - 3)Students will discuss their current or recent experiences as a student. They will also learn how to create productive learning environments by reviewing research on the nature of teaching and learning; setting course goals and objectives; using interactive lectures, peer instruction, engaging demonstrations, collaborative groups, tutorials, and ranking tasks; and observing other instructors. Students will conduct a collaborative research project of their choosing related to astronomy and space science. The course will culminate with students presenting mock lectures using these techniques. Prerequisite(s): Student must be Astronomy or Planetary Science undergraduate or graduate major. Consent of instructor. Typical structure: 1 hour lecture. May be repeated: for credit 3 times (maximum 4 enrollments). Identical to: ASTR 555. ASTR is home department. May be convened with: ASTR/PTYS 455. Usually offered: Spring. | Wallace |
| PTYS 588A |
Astrochemistry (3)This astrochemistry course is the study of gas phase and solid state chemical processes that occur in the universe, including those leading to pre-biotic compounds. Topics include chemical processes in dying stars, circumstellar gas, planetary nebulae, diffuse clouds, star-forming regions and proto-planetary discs, as well as planets, satellites, comets and asteroids. Observational methods and theoretical concepts will be discussed. Graduate-level requirements include a project and an oral exam. Identical to ASTR 588A; may be convened with ASTR 488A. ASTR is home department. | Ziurys |
| PTYS 594A |
Planetary Geology Field StudiesThe acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit but only three enrollments will count toward the major. Trip is led by a Planetary Sciences faculty member once per semester. PTYS594A: Planetary Geology Field Studies (Byrne) | Byrne |
| PTYS 596B |
Methods in Computational Astrophysics (3)The course is a "hands-on" introduction to computer use for research by scientists in astrophysics and related areas. The course begins with a survey of and introduction to tools available on Linux systems, web-based tools, and open-source software widely used in astrophysics. Standard methods for integration, iteration, differential and difference equations, and Monte Carlo simulations, are discussed, in one to four dimensions. Historically important methods of radiative transfer, reaction networks, and hydrodynamics are presented, and contrasted with presently-used methods. Parallel programming is introduced, and discussed in terms of new and future computer systems. Special topics are added to reflect new developments. The course is task-oriented, with individual and team work projects, and class participation determining grades. Most of the work is done on the student's own personal computer (Linux or Mac operating systems are preferred). Identical to ASTR/PHYS 596B. ASTR is home department. Equivalent to ASTR 596B and PHYS 596B; ASTR is home department. NOT cross-listed. Typically Offered Spring. Regular or Alternative Grades: ABCDE or SPCDE. | Pinto |
| PTYS 656A |
Atmospheric Radiation and Remote Sensing (3)Theory of atmospheric radiative transfer processes; specific methods for solving the relevant equations; applications to problems in radiative transfer; theoretical basis for remote sensing from the ground and from space; solutions to the "inverse" problem. Identical to ATMO 656A; ATMO is home department. Prerequisite(s): MATH 254. PTYS656A: Atmospheric Radiation and Remote Sensing (Griffith) | Griffith |




