Spring 2015 Graduate Courses

CourseTitle/Description (Credits)Section/Instructor
PTYS 503

Physics of the Solar System (3)

Survey of planetary physics, planetary motions, planetary interiors, geophysics, planetary atmospheres, asteroids, comets, origin of the solar system. Graduate-level requirements include an in-depth research paper on a selected topic and an oral class presentation. This course does not count toward the major requirements in Planetary Sciences. Equivalent to: ASTR 503, GEOS 503, and PHYS 503 (and cross-listed); may be co-convened with PTYS 403. PTYS is home department.

PTYS 510B
Core Course

Chemistry of the Solar System (3)

PTYS Graduate Core Course. Provides an overview of the gas and ice chemistry in planetary environments including molecular structure, spectroscopy, kinetics. The course describes how these physical processes are manifest in the diverse solar system environments. The instructional level is aimed at beginning graduate students with an adequate background comparable to that obtained from advance undergraduate courses in physics and chemistry. Knowledge of vector calculus and elementary differential equations is assumed. Successful students will be able to understand current research in planetary chemistry and will be well prepared for more detailed studies. Sample course syllabus, Yelle (PDF)

001 Yelle
PTYS 517
Core Course

Atmospheres and Remote Sensing (3)

PTYS Graduate Core Course. Structure, composition, and evolution of atmospheres; atomic and molecular spectroscopy; radiative transfer and spectral line formatting.
Sample course syllabus, Showman (PDF)
Sample course syllabus, Yelle (PDF)

PTYS 541B

Dynamic Metereology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Graduate-level requirements include a more quantitative and thorough understanding of the subject matter. ATMO is home department.

001 Zeng
PTYS 542

Mars (3)

In-depth class about the planet Mars, including origin and evolution, geophysics, geology, atmospheric science, climate change, the search for life, and the history and future of Mars exploration. There will be guest lectures from professors and research scientists with expertise about aspects of Mars. There will be lots of discussion of recent results and scientific controversies about Mars. Graduate-level requirements include the completion of a research project that will be presented in class as well as a report. The research project could be analysis of Mars datasets, a laboratory experiment, or new theoretical modeling. Regular grades are awarded for this course: A B C D E. Prerequisite(s): PTYS 411, Geology of the Solar System is strongly recommended but not required. Identical to: ASTR 542, GEOS 542. May be convened with: PTYS 442.

001 Bray
PTYS 568

Exoplanets: Discovery and Characterization (3)

This course will cover observational and theoretical ideas pertinent to planets orbiting other stars. Discovery and characterization techniques will be emphasized along with associated theory. In-class format will alternate from traditional lectures, guest lectures by local or visiting experts, and student-lead presentations.

001 Barman
PTYS 584

The Coevolution of the Earth and the Biosphere (3)

A geochemical and biological perspective on a range of topics including: early Earth and life, oxygenation of the atmosphere, the Cambrian explosion, rise of land animals, Perman gigantism, mass extinctions, green-ice-hot houses, snowball Earth and Ediacaran fauna, the rise of hominids, megafauna extinctions. GEOS is home department; course is cross-listed with GEOS/PTYS/ASTR and may be co-convened with PTYS 484. May be applied to Astrobiology minor.

001 Quade
PTYS 588A

Astrochemistry (3)

This astrochemistry course is the study of gas phase and solid state chemical processes that occur in the universe, including those leading to pre-biotic compounds. Topics include chemical processes in dying stars, circumstellar gas, planetary nebulae, diffuse clouds, star-forming regions and proto-planetary discs, as well as planets, satellites, comets and asteroids. Observational methods and theoretical concepts will be discussed. Graduate-level requirements include a project and an oral exam. Identical to ASTR 588A; may be convened with ASTR 488A. ASTR is home department.

001 Ziurys
PTYS 589

Topics in Theoretical Astrophysics (3)

Current topics in theoretical astrophysics in depth, with emphasis on the methodology and techniques of the theorist and the cross-disciplinary nature of astrophysics theory. Example subjects are nuclear astrophysics, hydrodynamics, transient phenomena, planetary interiors and atmospheres, neutron stars, jets and the evolution of star clusters. May be repeated for credit 1 time (maximum 2 enrollments). Identical to ASTR 589 and PHYS 589.

001 Sarcevic/Kratter
PTYS 594A

Planetary Geology Field Studies (1)

The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit but only three enrollments will count toward the major. Trip is led by a Planetary Sciences faculty member once per semester.

Course Page: PTYS 594A (001) Byrne: https://pirlwww.lpl.arizona.edu/wiki/Fieldtrip

001 Byrne
PTYS 641

Advanced Atmospheric and Oceanic Fluid Dynamics (3)

Fundamentals and theory of the large-scale circulation of the atmosphere and oceans. Hierarchy of equation sets used in geophysical fluid dynamics. Concepts of balance, vorticity, potential vorticity. Barotropic and baroclinic instability. Wave mean-flow interactions. Atmosphere/ocean turbulence. Dynamics of Hadley cells and jet streams; role of Rossby waves, gravity waves, and baroclinic eddies in helping to maintain the mean flow. Application of this theory to understand the fundamental mechanisms controlling the tropospheric and stratospheric circulation of the Earth and other planets. Basics of oceanic circulation, including wind-driven gyres, buoyancy-driven (overturning) circulation, and thermocline dynamics. This course identical to ATMO 641. ATMO is home department.