2017 Fall

Planet Earth: Evolution of the Habitable World (3)

This course develops a planetary perspective on the evolutionary processes that shaped Earth throughout history. We will examine why Earth is habitable, that is, why any kind of life can live on it, we will discuss the unique influences that biological processes and atmosphere/ocean systems have on each other, and we will review current notions of climate change, including evidence for the influence of human activities on it. This interdisciplinary treatment of Earth and its sister planets will encourage students to think about how science and engineering must be applied to today's challenges if humankind is to have a promising future on (and off) this planet. PTYS 170A1 is a Tier I Natural Science course in the University's general education curriculum. This course is co-convened (cross-listed) with ASTR 170A1.

The Universe and Humanity: Origin and Destiny (3)

The Universe And Humanity: Origin And Destiny places Earth and humanity in a broad cosmic context. Topics range from the Big Bang cosmology to human consciousness with emphasis on the events and evolutionary processes that define the physical universe and our place in it. PTYS 170B2 is a Tier I Natural Science course in the University's general education curriculum. This course is co-convened (cross-listed) with ASTR 170B2.

Our Golden Age of Planetary Exploration (3)

PTYS 206 emphasizes the part of the universe that is within reach of direct human experience and exploration. We will review current understanding of the contents of our Solar System and emphasize the processes that unite all of the planets and smaller bodies, such as tectonics, weathering, cratering, differentiation, and the evolution of oceans and atmospheres. The course will build on this knowledge to understand humankind's motivation to explore beyond our Solar System, especially to search for planets around distant stars and to look or listen for evidence of life elsewhere in the Universe. PTYS 206 is a Tier II Natural Science course in the University's general education curriculum. PTYS 206 is cross-listed with ASTR 206. Course requisites: Two courses from Tier One, Natural Sciences.

Astrobiology: A Planetary Perspective (3)

We will explore questions about the origin, evolution, and future of life on Earth and the possibility of life arising independently elsewhere in the Universe. We will examine what it means for a planet to be habitable, both in terms of basic necessities for living organisms to function and environmental limits to their ability to survive. Finally, we will review different approaches for searching for life within the Solar System and beyond using direct and remote sensing techniques. PTYS 214 is a Tier II Natural Science course in the University general education curriculum. PTYS 214 is cross-listed with ASTR 214 and GEOS 214. Course is equivalent to ASTR 202 (students may not receive credit for both courses).

Chemistry of the Solar System (3)

Abundance, origin, distribution, and chemical behavior of the chemical elements in the Solar System. Emphasis on applications of chemical equilibrium, photochemistry, and mineral phase equilibrium theory. Prerequisites: CHEM 152, MATH 129, and PHYS 132 or their equivalents. PTYS 407 is required for the PTYS Minor. PTYS 407 is equivalent to CHEM 407 (not cross-listed).

Asteroids, Comets and Kuiper Belt Objects (3)

This is an introduction to the "minor planets," the asteroids, comets and Kuiper Belt objects. The focus will be on origin and evolution (including current evolution), as well as techniques of study. It will include an evening at the telescope of an asteroid search program. Graduate-level requirement includes some original work or calculations in the paper/project submitted and to research one of the primary topics and lead the class discussion of it. PTYS 416 may be co-convened with PTYS 516.
 

Independent Study (1-5)

Qualified students working on an individual basis with professors who have agreed to supervise such work. Units. 1.00 - 5.00.  Independent Study Required. Typically Offered: Fall, Spring, Summer 1 and 2.

(015) Lauretta

Analytical and Numerical Modeling in Geosciences (3)

Analytical and numerical solutions to partial differential equations and other models widely used in disparate fields of geosciences. Equivalent to: GEOS 502, ECOL 502, MCB 502; GEOS is home department. Course Requisites: MATH 129. Open to advanced undergraduates with strong mathematical backgrounds and consent of instructor and Graduate College.

(001) Pelletier

Asteroids, Comets and Kuiper Belt Objects (3)

This is an introduction to the "minor planets," the asteroids, comets and Kuiper Belt objects. The focus will be on origin and evolution (including current evolution), as well as techniques of study. It will include an evening at the telescope of an asteroid search program. Graduate-level requirement includes some original work or calculations in the paper/project submitted and to research one of the primary topics and lead the class discussion of it. May be co-convened with PTYS 416.

Dynamic Meteorology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Identical to ATMO 541A. ATMO is home department.

(001) Zeng

Stars and Accretion (4)

Equations of hydrodynamics; hydrodynamic equilibrium; polytropes; waves, and instabilities; convection and turbulence; radiative transfer; stellar atmospheres; stellar winds; nuclear reactions; stellar structure; helioseismology; stellar evolution; supernovae; white dwarfs, neutron stars, black holes; magnetohydrodynamics; accretion flows. Identical to: ASTR 545; ASTR is home department. Usually offered: Fall.

(001) Eisner/Youdin

Core Course

Evolution of Planetary Surfaces (3)

PTYS Graduate Core Course. The geologic processes and evolution of terrestrial planet and satellite surfaces including the Galilean and Saturnian and Uranian satellites. Course includes one or two field trips to Meteor Crater or other locales. Identical to: GEOS 554. PTYS is home department. Usually offered: Spring. Sample course syllabus, Byrne (PDF)

Inverse Problems in Geophysics (3)

Linear and nonlinear inverse theory, including least squares, generalized and maximum likelihood methods. Identical to GEOS 567 and ATMO 567. GEOS is home department.

(001) Richardson

Astrochemistry (3)

This astrochemistry course is the study of gas phase and solid state chemical processes that occur in the universe, including those leading to pre-biotic compounds. Topics include chemical processes in dying stars, circumstellar gas, planetary nebulae, diffuse clouds, star-forming regions and proto-planetary discs, as well as planets, satellites, comets and asteroids. Observational methods and theoretical concepts will be discussed. Graduate-level requirements include a project and an oral exam. Identical to ASTR 588A; may be convened with ASTR 488A. ASTR is home department.

(001) Ziurys

Planetary Geology Field Studies (1)

The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit. Trip is led by a Planetary Sciences faculty member once per semester. Altnerative grading (SPF).

Special Topics in Planetary Science (1-4)

Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required.  Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries.  Course may be co-convened with PTYS 495B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 4x (or up to 12 units). Regular grades assigned (ABC).

(001) Hamilton | Course Page | Syllabus

Fall 2017 Section 001 is Career Development. This two-unit special topics course will help students prepare for successful careers in science and related fields through lectures, group discussions, and assignments related to: research proposals, alternative job opportunities, scientific publications, communication, and teaching/mentoring. The course will also feature a wide range of invited speakers to help provide a broad perspective on pertinent issues.  (2 units)