2018 Fall

PTYS/ASTR 170A1

Alien Earths (3)

Thousands of planets have been discovered orbiting nearby stars. How many of these worlds can we expect to be Earth-like? We explore this question from the perspective of astronomers, geologists, and historians. We look back at Earth’s geologic history to periods when our planet itself would appear very alien to us today. We study the nearby planets Venus and Mars, which were once more Earth-like than today. We discuss not only the evolution of Earth, Venus, and Mars as habitable worlds but also how human understanding of these planets has evolved. Finally, we apply these perspectives to the search for alien Earths in our galaxy. This interdisciplinary treatment of Earth, its neighboring planets, and planets being discovered around nearby stars allows us to consider the potentially unique position of Earth as a habitable world not only in space but in time.

Course Level: GenEd: Building Connections, GenEd: Quantitative Reasoning, GenEd: WritingCourse Level Other: Tier I NATS

PTYS/ASTR 170B2

Universe and Humanity: Exploring Our Place in Space (3)

This course places the Earth and humanity in a broad cosmic context and seeks to answer fundamental questions about our surroundings. Where are we and where do we come from? What is matter made of and what processes created it? What are different types of stars like and where does our Sun fit in? What is the role of stars in shaping the cosmos and the planets orbiting them? How did the Sun, the Earth, and the other planets in the solar system form? What are the planets in the solar system like and are there other planetary systems like ours? In addition to exploring these questions, this course will help students to understand how we have arrived at our current view of the universe, with a focus on the scientific method and the history of astronomy.

Course Level: GenEd: Exploring Perspectives - Natural Scientist, GenEd: Quantitative Reasoning, GenEd: WritingCourse Level Other: Tier 1 NATS

PTYS/ASTR 206

Exploring Our Solar System (3)

Our Solar System is filled with an incredible diversity of objects. These include the sun and planets, of course, but also many hundreds of moons—some with exotic oceans, erupting volcanoes, or dynamic atmospheres. Billions of asteroids and comets inhabit the space between and beyond the planets. Each body is unique, and has followed its own evolutionary history. This class will explore our current understanding of the Solar System and emphasize similarities that unite the different bodies as well as the differences between them. We will develop an understanding of physical processes that occur on these bodies, including tectonics, impact cratering, volcanism, and processes operating in their interiors, oceans, and atmospheres. We will also discuss planets around nearby stars and the potential for life beyond Earth. Throughout the class, we will highlight the leading role that the University of Arizona has played in exploring our Solar System.

Course Objectives: Students who engage with this course will develop a broad understanding of many fundamental concepts in planetary science and gain an appreciation for the discoveries and reasoning that leads to this understanding. They will learn to collect their own data as well as gather relevant supporting information from a variety of outside sources. Throughout the semester students will be demonstrating their grasp of course material by composing written assignments at a level their peers outside of the class will understand (a.k.a., Students on the Street, or SOS). During the term project students will be assisted in working with telescopes to obtain astronomical images using their own smart phone cameras. Students will learn during in-class workshops how to use their own images to then construct a time-lapse animation. Expected Learning Outcomes: Upon successful completion of this course students will be able to (1) access and use information and data from a variety of sources, including their own activities, (2) critically evaluate this information and data for reliability in supporting fundamental concepts, (3) effectively communicate an understanding of these concepts to their SOS peers by synthesizing the information and data they have gathered, (4) demonstrate practical skills with a variety of software, including Word, Excel, Keynote, PowerPoint, and image/video editing apps.

Course Level: GenEd: Exploring Perspectives - Natural Scientist, GenEd: Quantitative Reasoning, GenEd: Writing, PTYS Minor ElectiveCourse Level Other: Tier 2 NATS

PTYS/ASTR/GEOS 214

Life in the Cosmos (3)

This course explores key questions in astrobiology and planetary science about the origin and evolution of life on Earth and the possibility that such phenomena have arisen elsewhere in the Universe. We examine what it means for a planet to be alive at scales ranging from cellular processes up to global impacts of biological activity. We survey international space-exploration activities to search for life within the Solar System, throughout our Galaxy, and beyond.

Course Level: GenEd: Building Connections, GenEd: Quantitative Reasoning, GenEd: World Cultures & Societies, PTYS Minor ElectiveCourse Level Other: Tier 2 NATS

PTYS 416

Asteroids, Comets and Kuiper Belt Objects (3)

This is an introduction to the "minor planets," the asteroids, comets and Kuiper Belt objects. The focus will be on origin and evolution (including current evolution), as well as techniques of study. It will include an evening at the telescope of an asteroid search program. Graduate-level requirement includes some original work or calculations in the paper/project submitted and to research one of the primary topics and lead the class discussion of it. PTYS 416 may be co-convened with PTYS 516.
 

Course Level: PTYS Minor Elective

PTYS 495B

Special Topics in Planetary Science (2-3)

Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required.  Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries.  Course may be co-convened with PTYS 595B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 3x (or up to 9 units). Regular grades assigned (ABC).

Course Level: PTYS Minor Elective
(001) Walter Harris | https://www.lpl.arizona.edu/harris/courses/ptys-495b595b | Syllabus

Section 001 (Harris) is 3 units, Observational Campaigns. Observational campaigns are often assembled around astronomical events of significance such as a favorable comet appearance or as ‘under-flight’ for mission events.  Campaigns can take various forms focusing on a combination of cadence, wavelength coverage, and coordinating multiple observational techniques, all with the aim of developing a more integrated understanding of the phenomenon being studied.  In this course, students will participate in an ongoing campaign. They will be introduced to the scientific goals of the campaign and how the various instrumental tools are combined to address them. They will then become involved in the execution of the observations and the preliminary analysis of the data obtained. Field-participation will be a required element.

PTYS 505A

Core Course

Principles of Planetary Physics (3)

PTYS Graduate Core Course. Introductory physics of planetary and interplanetary gases, fluids and plasmas. Thermodynamics, kinetic theory, plasma physics, hydrodynamics, and magnetohydrodynamics with solar-system applications. This includes planetary atmospheres, turbulence, solar wind, solar-system magnetic fields, dynamo theory, and planetary magnetospheres. Students will be expected to be familiar with vector calculus and both ordinary and partial differential equations. In addition, students will be expected to know, or learn, a programming language such as C, Fortran, IDL or MATLAB. Course requisites: Classical and quantum mechanics at the level of PHYS 151 and PHYS 242.  Sample course syllabus, Giacalone (PDF). Sample course syllabus, Klein (PDF).

Course Level Other: PTYS Graduate Core Course

PTYS 512

Core Course

Planetary Global Tectonics (3)

PTYS Graduate Core Course. Application of the physics of solid-state deformation to global tectonics of the terrestrial planets and icy moons of the solar system. Modes of topographic support, isostasy and implications for gravity/topography ratios on one-plate planets. Theory of floating elastic plates as an approximation to the lithosphere. Use of seismic data to determine the interior structure and composition and modes of heat conduction in planets.
Sample course syllabus, Andrews-Hanna (PDF)
 

Course Level Other: PTYS Graduate Core Course

PTYS 516

Asteroids, Comets and Kuiper Belt Objects (3)

This is an introduction to the "minor planets," the asteroids, comets and Kuiper Belt objects. The focus will be on origin and evolution (including current evolution), as well as techniques of study. It will include an evening at the telescope of an asteroid search program. Graduate-level requirement includes some original work or calculations in the paper/project submitted and to research one of the primary topics and lead the class discussion of it. May be co-convened with PTYS 416.

Course Level Other: PTYS Graduate Elective

PTYS/MSE 526

Nanoscale Analysis of Materials Using Transmission Electron Microscopy (3)

This course discusses the theory and practice of transmission electron microscopy as applied crystalline solids. Among the topics to be covered include electron scattering and diffraction, image formation, energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy. Weekly lectures will be accompanied by several laboratory practical sessions. Emphasis will be placed on quantitative analysis of material structure and composition as well as the identification of unknown materials. Equivalent to: MSE 526; PTYS is home department.

Course Level Other: PTYS Graduate Elective
(001) Tom Zega | PTYS/MSE 526 Fall 2018 | Syllabus

PTYS/ATMO 541A

Dynamic Meteorology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Identical to ATMO 541A. ATMO is home department.

Course Level Other: PTYS Graduate Elective
(001) Zeng

PTYS/ASTR 545

Stars and Planets (3)

This course will explore the physical principles that govern the structure and evolution of stars and planets. Topics covered will include stellar structure, energy generation and transport, and equations of state. Applying physical models and computational methods, fundamental properties of stars and planets will be derived, and compared with observational constraints. Identical to: ASTR 545; ASTR is home department. Usually offered: Fall.

Course Level: PTYS Graduate ElectiveCourse Level Other: PTYS Graduate Elective
(001) Eisner/Youdin

PTYS/ASTR/CHEM 588A

Astrochemistry (3)

This astrochemistry course is the study of gas phase and solid state chemical processes that occur in the universe, including those leading to pre-biotic compounds. Topics include chemical processes in dying stars, circumstellar gas, planetary nebulae, diffuse clouds, star-forming regions and proto-planetary discs, as well as planets, satellites, comets and asteroids. Observational methods and theoretical concepts will be discussed. Graduate-level requirements include a project and an oral exam. Identical to ASTR 588A; may be convened with ASTR 488A. ASTR is home department.

Course Level Other: PTYS Graduate Elective
(001) Ziurys

PTYS 590

Planetary Geology Field Studies (1)

The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit. Trip is led by a Planetary Sciences faculty member once per semester. Altnerative grading (SPF).

Course Level: PTYS Graduate ElectiveCourse Level Other: PTYS Graduate Elective

PTYS 595B

Special Topics in Planetary Science (1-4)

Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required.  Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries.  Course may be co-convened with PTYS 495B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 4x (or up to 12 units). Regular grades assigned (ABC).

(001) Vishnu Reddy | Syllabus

Section 001 (Reddy) is 2 units, Communicating Science. 

(002) Walter Harris | https://www.lpl.arizona.edu/harris/courses/ptys-495b595b | Syllabus

Section 002 (Harris) is 3 units, Observational Campaigns. Observational campaigns are often assembled around astronomical events of significance such as a favorable comet appearance or as ‘under-flight’ for mission events.  Campaigns can take various forms focusing on a combination of cadence, wavelength coverage, and coordinating multiple observational techniques, all with the aim of developing a more integrated understanding of the phenomenon being studied.  In this course, students will participate in an ongoing campaign. They will be introduced to the scientific goals of the campaign and how the various instrumental tools are combined to address them. They will then become involved in the execution of the observations and the preliminary analysis of the data obtained. Field-participation will be a required element.

(003) Jeffrey Andrews-Hanna | http://d2l.arizona.edu | Syllabus

Section 003 (Andrews-Hanna) is 3 units, Evolution of the Terrestrial Planets. This course will explore the evolution of the terrestrial planets (including the Moon), with an emphasis on internal evolution and geodynamics. We will focus on each individual body, and the processes and properties that governed its evolution from accretion to present-day. In so doing, we will build on the theory taught in other classes, but with a greater emphasis on application to the planets. Lectures will be supplemented by readings and discussions.

PTYS/ASTR/PHYS 596B

Methods in Computational Astrophysics (3)

The course is a "hands-on" introduction to computer use for research by scientists in astrophysics and related areas. The course begins with a survey of and introduction to tools available on Linux systems, web-based tools, and open-source software widely used in astrophysics. Standard methods for integration, iteration, differential and difference equations, and Monte Carlo simulations, are discussed, in one to four dimensions. Historically important methods of radiative transfer, reaction networks, and hydrodynamics are presented, and contrasted with presently-used methods. Parallel programming is introduced, and discussed in terms of new and future computer systems. Special topics are added to reflect new developments. The course is task-oriented, with individual and team work projects, and class participation determining grades. Most of the work is done on the student's own personal computer (Linux or Mac operating systems are preferred). Identical to ASTR/PHYS 596B. ASTR is home department. Equivalent to ASTR 596B and PHYS 596B; ASTR is home department. Typically Offered Spring. Regular or Alternative Grades: ABCDE or SPF.

Course Level Other: PTYS Graduate Elective
(001) Pinto