Fall 2019 Graduate Courses

Analytical and Numerical Modeling in Geosciences (3)

Analytical and numerical solutions to partial differential equations and other models widely used in disparate fields of geosciences. Equivalent to: GEOS 502, ECOL 502, MCB 502; GEOS is home department. Course Requisites: MATH 129. Open to advanced undergraduates with strong mathematical backgrounds and consent of instructor and Graduate College.

(001) Pelletier

Core Course

Principles of Planetary Physics (3)

PTYS Graduate Core Course. Quantitative investigation of the physical processes controlling planet formation, the orbital and rotational dynamics of planetary systems, the mechanical and thermal aspects of a planetary interior, and the dynamics of the Earth-Moon and other satellite systems. Sample course syllabus, Matsuyama (PDF)

(001) Matsuyama

Asteroids, Comets and Kuiper Belt Objects (3)

This is an introduction to the "minor planets," the asteroids, comets and Kuiper Belt objects. The focus will be on origin and evolution (including current evolution), as well as techniques of study. It will include an evening at the telescope of an asteroid search program. Graduate-level requirement includes some original work or calculations in the paper/project submitted and to research one of the primary topics and lead the class discussion of it. May be co-convened with PTYS 416.

(001) Harris

Instrumentation and Statistics (3)

Radiant energy; signals and noise; detectors and techniques for imaging, photometry, polarimetry and spectroscopy. Examples from stellar and planetary astronomy in the x-ray, optical, infrared and radio. Graduate-level requirements include an in-depth research paper. Identical to ASTR 518. ASTR is home department.

(001) Bender/Hinz

Dynamic Meteorology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Identical to ATMO 541A. ATMO is home department.

(001) Zeng

Stars and Accretion (4)

Equations of hydrodynamics; hydrodynamic equilibrium; polytropes; waves, and instabilities; convection and turbulence; radiative transfer; stellar atmospheres; stellar winds; nuclear reactions; stellar structure; helioseismology; stellar evolution; supernovae; white dwarfs, neutron stars, black holes; magnetohydrodynamics; accretion flows. Identical to: ASTR 545; ASTR is home department. Usually offered: Fall.

(001) Eisner/Youdin

Origin of the Solar System and Other Planetary Systems (3)

This course will review the physical processes related to the formation and evolution of the protosolar nebula and of protoplanetary disks. In doing that, we will discuss the main stages of planet formation and how different disk conditions impact planetary architectures and planet properties. We will confront the theories of disk evolution and planet formation with observations of circumstellar disks, exoplanets, and the planets and minor bodies in our Solar System. This course is cross-listed with ASTR 550 and may be co-convened with PTYS 450.

(001) Pascucci

Core Course

Evolution of Planetary Surfaces (3)

PTYS Graduate Core Course. The geologic processes and evolution of terrestrial planet and satellite surfaces including the Galilean and Saturnian and Uranian satellites. Course includes one or two field trips to Meteor Crater or other locales. Identical to: GEOS 554. PTYS is home department. Usually offered: Spring. Sample course syllabus, Byrne (PDF)

(001) Byrne

Planetary Geology Field Studies (1)

The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit. Trip is led by a Planetary Sciences faculty member once per semester. Altnerative grading (SPF).

Special Topics in Planetary Science (1-4)

Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required.  Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries.  Course may be co-convened with PTYS 495B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 4x (or up to 12 units). Regular grades assigned (ABC).

(001) Asphaug

Planetary Surface Processes Seminar (1)

This seminar course will focus on discussion of planetary surfaces and their evolution, including geology of rocky planets and moons, icy surfaces and moons, regolith development, surface-atmosphere interactions, sub-surface structure and interiors, and climate change. The course will involve the exchange of scholarly information in a small group setting, including presentations and discussions of student research, reviews of recent science results and discussion of proposal ideas. Students will be expected to lead 1 to 2 presentations and participate in group discussions. This course is intended for graduate students; senior undergraduates may be able to enroll with permission of the instructor. Alternative Grading S, P, F; may be repeated for 10 completions/units.

(001) Carter

Methods in Computational Astrophysics (3)

The course is a "hands-on" introduction to computer use for research by scientists in astrophysics and related areas. The course begins with a survey of and introduction to tools available on Linux systems, web-based tools, and open-source software widely used in astrophysics. Standard methods for integration, iteration, differential and difference equations, and Monte Carlo simulations, are discussed, in one to four dimensions. Historically important methods of radiative transfer, reaction networks, and hydrodynamics are presented, and contrasted with presently-used methods. Parallel programming is introduced, and discussed in terms of new and future computer systems. Special topics are added to reflect new developments. The course is task-oriented, with individual and team work projects, and class participation determining grades. Most of the work is done on the student's own personal computer (Linux or Mac operating systems are preferred). Identical to ASTR/PHYS 596B. ASTR is home department. Equivalent to ASTR 596B and PHYS 596B; ASTR is home department. Typically Offered Spring. Regular or Alternative Grades: ABCDE or SPF.

(001) Pinto

Atmospheric Radiation and Remote Sensing (3)

Theory of atmospheric radiative transfer processes; specific methods for solving the relevant equations; applications to problems in radiative transfer; theoretical basis for remote sensing from the ground and from space; solutions to the "inverse" problem. Equivalent to OPTI 656B. Also offered as ATMO/OPTI 656B (cross-listed). ATMO is home department. Course Requisites: MATH 254.

(001) Dong