Fall 2019 Undergraduate Courses

Chemistry of the Solar System (3)

Abundance, origin, distribution, and chemical behavior of the chemical elements in the Solar System. Emphasis on applications of chemical equilibrium, photochemistry, and mineral phase equilibrium theory. Prerequisites: CHEM 152, MATH 129, and PHYS 132 or their equivalents. PTYS 407 is required for the PTYS Minor. PTYS 407 is equivalent to CHEM 407 (not cross-listed).

Asteroids, Comets and Kuiper Belt Objects (3)

This is an introduction to the "minor planets," the asteroids, comets and Kuiper Belt objects. The focus will be on origin and evolution (including current evolution), as well as techniques of study. It will include an evening at the telescope of an asteroid search program. Graduate-level requirement includes some original work or calculations in the paper/project submitted and to research one of the primary topics and lead the class discussion of it. PTYS 416 may be co-convened with PTYS 516.
 

(001) Harris | Syllabus

Origin of the Solar System and Other Planetary Systems (3)

This course will review the physical processes related to the formation and evolution of the protosolar nebula and of protoplanetary disks. In doing that, we will discuss the main stages of planet formation and how different disk conditions impact planetary architectures and planet properties. We will confront the theories of disk evolution and planet formation with observations of circumstellar disks, exoplanets, and the planets and minor bodies in our Solar System. This course may be co-convened with PTYS/ASTR 550.

Planet Earth: Evolution of the Habitable World (3)

This course develops a planetary perspective on the evolutionary processes that shaped Earth throughout history. We will examine why Earth is habitable, that is, why any kind of life can live on it, we will discuss the unique influences that biological processes and atmosphere/ocean systems have on each other, and we will review current notions of climate change, including evidence for the influence of human activities on it. This interdisciplinary treatment of Earth and its sister planets will encourage students to think about how science and engineering must be applied to today's challenges if humankind is to have a promising future on (and off) this planet. PTYS 170A1 is a Tier I Natural Science course in the University's general education curriculum. This course is co-convened (cross-listed) with ASTR 170A1.

The Universe and Humanity: Origin and Destiny (3)

The Universe And Humanity: Origin And Destiny places Earth and humanity in a broad cosmic context. Topics range from the Big Bang cosmology to human consciousness with emphasis on the events and evolutionary processes that define the physical universe and our place in it. PTYS 170B2 is a Tier I Natural Science course in the University's general education curriculum. This course is co-convened (cross-listed) with ASTR 170B2.

Exploring Our Solar System (3)

Our Solar System is filled with an incredible diversity of objects. These include the sun and planets, of course, but also many hundreds of moons—some with exotic oceans, erupting volcanoes, or dynamic atmospheres. Billions of asteroids and comets inhabit the space between and beyond the planets. Each body is unique, and has followed its own evolutionary history. This class will explore our current understanding of the Solar System and emphasize similarities that unite the different bodies as well as the differences between them. We will develop an understanding of physical processes that occur on these bodies, including tectonics, impact cratering, volcanism, and processes operating in their interiors, oceans, and atmospheres. We will also discuss planets around nearby stars and the potential for life beyond Earth. Throughout the class, we will highlight the leading role that the University of Arizona has played in exploring our Solar System.

Course Objectives: Students who engage with this course will develop a broad understanding of many fundamental concepts in planetary science and gain an appreciation for the discoveries and reasoning that leads to this understanding. They will learn to collect their own data as well as gather relevant supporting information from a variety of outside sources. Throughout the semester students will be demonstrating their grasp of course material by composing written assignments at a level their peers outside of the class will understand (a.k.a., Students on the Street, or SOS). During the term project students will be assisted in working with telescopes to obtain astronomical images using their own smart phone cameras. Students will learn during in-class workshops how to use their own images to then construct a time-lapse animation. Expected Learning Outcomes: Upon successful completion of this course students will be able to (1) access and use information and data from a variety of sources, including their own activities, (2) critically evaluate this information and data for reliability in supporting fundamental concepts, (3) effectively communicate an understanding of these concepts to their SOS peers by synthesizing the information and data they have gathered, (4) demonstrate practical skills with a variety of software, including Word, Excel, Keynote, PowerPoint, and image/video editing apps.

PTYS 206 is cross-listed with ASTR 206. Course requisites: Two courses from Tier One, Natural Sciences.

Astrobiology: A Planetary Perspective (3)

We will explore questions about the origin, evolution, and future of life on Earth and the possibility of life arising independently elsewhere in the Universe. We will examine what it means for a planet to be habitable, both in terms of basic necessities for living organisms to function and environmental limits to their ability to survive. Finally, we will review different approaches for searching for life within the Solar System and beyond using direct and remote sensing techniques. PTYS 214 is a Tier II Natural Science course in the University general education curriculum. PTYS 214 is cross-listed with ASTR 214 and GEOS 214. Course is equivalent to ASTR 202 (students may not receive credit for both courses).