2023 Fall

PTYS/ASTR 170A1

Alien Earths (3)

Thousands of planets have been discovered orbiting nearby stars. How many of these worlds can we expect to be Earth-like? We explore this question from the perspective of astronomers, geologists, and historians. We look back at Earth’s geologic history to periods when our planet itself would appear very alien to us today. We study the nearby planets Venus and Mars, which were once more Earth-like than today. We discuss not only the evolution of Earth, Venus, and Mars as habitable worlds but also how human understanding of these planets has evolved. Finally, we apply these perspectives to the search for alien Earths in our galaxy. This interdisciplinary treatment of Earth, its neighboring planets, and planets being discovered around nearby stars allows us to consider the potentially unique position of Earth as a habitable world not only in space but in time.

Course Level: GenEd: Building Connections, GenEd: Quantitative Reasoning, GenEd: WritingCourse Level Other: Tier I NATS

PTYS/ASTR 170B2

Universe and Humanity: Exploring Our Place in Space (3)

This course places the Earth and humanity in a broad cosmic context and seeks to answer fundamental questions about our surroundings. Where are we and where do we come from? What is matter made of and what processes created it? What are different types of stars like and where does our Sun fit in? What is the role of stars in shaping the cosmos and the planets orbiting them? How did the Sun, the Earth, and the other planets in the solar system form? What are the planets in the solar system like and are there other planetary systems like ours? In addition to exploring these questions, this course will help students to understand how we have arrived at our current view of the universe, with a focus on the scientific method and the history of astronomy.

Course Level: GenEd: Exploring Perspectives - Natural Scientist, GenEd: Quantitative Reasoning, GenEd: WritingCourse Level Other: Tier 1 NATS
(001) Tom Zega | Syllabus

PTYS/ASTR 206

Exploring Our Solar System (3)

Our Solar System is filled with an incredible diversity of objects. These include the sun and planets, of course, but also many hundreds of moons—some with exotic oceans, erupting volcanoes, or dynamic atmospheres. Billions of asteroids and comets inhabit the space between and beyond the planets. Each body is unique, and has followed its own evolutionary history. This class will explore our current understanding of the Solar System and emphasize similarities that unite the different bodies as well as the differences between them. We will develop an understanding of physical processes that occur on these bodies, including tectonics, impact cratering, volcanism, and processes operating in their interiors, oceans, and atmospheres. We will also discuss planets around nearby stars and the potential for life beyond Earth. Throughout the class, we will highlight the leading role that the University of Arizona has played in exploring our Solar System.

Course Objectives: Students who engage with this course will develop a broad understanding of many fundamental concepts in planetary science and gain an appreciation for the discoveries and reasoning that leads to this understanding. They will learn to collect their own data as well as gather relevant supporting information from a variety of outside sources. Throughout the semester students will be demonstrating their grasp of course material by composing written assignments at a level their peers outside of the class will understand (a.k.a., Students on the Street, or SOS). During the term project students will be assisted in working with telescopes to obtain astronomical images using their own smart phone cameras. Students will learn during in-class workshops how to use their own images to then construct a time-lapse animation. Expected Learning Outcomes: Upon successful completion of this course students will be able to (1) access and use information and data from a variety of sources, including their own activities, (2) critically evaluate this information and data for reliability in supporting fundamental concepts, (3) effectively communicate an understanding of these concepts to their SOS peers by synthesizing the information and data they have gathered, (4) demonstrate practical skills with a variety of software, including Word, Excel, Keynote, PowerPoint, and image/video editing apps.

Course Level: GenEd: Exploring Perspectives - Natural Scientist, GenEd: Quantitative Reasoning, GenEd: Writing, PTYS Minor ElectiveCourse Level Other: Tier 2 NATS

PTYS/ASTR 212

The Science and Politics of Climate Change (3)

This course explores the science of climate change and the political and commercial issues related to global warming. The first part of the course focuses on the scientific basis of climate change. Students will investigate the concepts and principles required for understanding planetary climates. They will assess the observational evidence for climate change and quantify the relative roles of natural and human drivers in causing it. They will connect and compare recent changes to historical climate trends and examine predictions for the impact of future climate change on the environment and our lives. The second part of the course focuses on the political and commercial issues related to climate change mitigation. Students will analyze policies designed to reduce greenhouse gas emissions and explore their impacts from the perspectives of policymakers, commercial interests and the public.

Course Level: GenEd: Building Connections, GenEd: Quantitative Reasoning, GenEd: Writing, PTYS Minor ElectiveCourse Level Other: Tier 2 NATS

PTYS/ASTR/GEOS 214

Life in the Cosmos (3)

This course explores key questions in astrobiology and planetary science about the origin and evolution of life on Earth and the possibility that such phenomena have arisen elsewhere in the Universe. We examine what it means for a planet to be alive at scales ranging from cellular processes up to global impacts of biological activity. We survey international space-exploration activities to search for life within the Solar System, throughout our Galaxy, and beyond.

Course Level: GenEd: Building Connections, GenEd: Quantitative Reasoning, GenEd: World Cultures & Societies, PTYS Minor ElectiveCourse Level Other: Tier 2 NATS

PTYS 297A

Teaching Teams Professional Development Workshop (3)

Professional development for undergraduates of all disciplines in areas of peer instruction and mentoring, leadership, public speaking, group dynamics, and interview skills; also assists students with preceptorships.

Course Level Other: Undergraduate Workshop
(100) Kortenkamp/Edwards | Syllabus

PTYS 393

Teaching Teams Internship (3)

Internship for students who have completed PTYS 297A (formerly LASC 297A), with at least one semester as a preceptor of a university-level course) to continue their reaching team education. Course covers elements of learning environments, communication skills, providing feedback, performance evaluation, and cooperative learning strategies.

Course Level Other: Undergraduate Internship
(001) Kortenkamp/Edwards | Syllabus
(002) | Syllabus

PTYS 397A

Professional Development in a Digital Age (2-3)

Professional development in areas that are affected by transition to digital formats. Students will learn about elevator pitches, communication, utilizing professional technologies, resumes and curriculum vitaes, online resumes and portfolios, professionalism within social media, searching for jobs online, and interviewing.

Course Level Other: Undergraduate Workshop
(001) Kortenkamp/Edwards | Syllabus

PTYS/ASTR 418

Astronomical Instrumentation (2)

Radiant energy; signals and noise; detectors and techniques for imaging, photometry, polarimetry and spectroscopy. Examples from stellar and planetary astronomy in the x-ray, optical, infrared and radio. Equivalent to ASTR 418. ASTR is home department.

Course Level: PTYS Minor Elective
(001) Daniel Marrone

PTYS/ATMO 441A

Dynamic Meteorology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Prerequisite: PHYS 426 or consent of instructor. ATMO is home department.

Course Level: PTYS Minor Elective
(001) Brunke

PTYS/ASTR 450

Origin of the Solar System and Other Planetary Systems (3)

This course will review the physical processes related to the formation and evolution of the protosolar nebula and of protoplanetary disks. In doing that, we will discuss the main stages of planet formation and how different disk conditions impact planetary architectures and planet properties. We will confront the theories of disk evolution and planet formation with observations of circumstellar disks, exoplanets, and the planets and minor bodies in our Solar System. This course is cross-listed with ASTR 450 and may be co-convened with PTYS 550.

Course Level: PTYS Minor Elective

PTYS 493

Advanced Teaching Teams Internship (3)

This advanced internship is for students who have completed PTYS 393. Course covers elements of learning environments, communication skills, providing feedback, performance evaluation, and cooperative learning strategies; it requires students to peer lead workshop sections within the Teaching Teams Program alongside a faculty/staff mentor.

Course Level Other: Undergraduate Internship
(001) Steve Kortenkamp, Edwards | Syllabus

PTYS/GEOS 502

Analytical and Numerical Modeling in Geosciences (3)

Analytical and numerical solutions to partial differential equations and other models widely used in disparate fields of geosciences. Equivalent to: GEOS 502, ECOL 502, MCB 502; GEOS is home department. Course Requisites: MATH 129. Open to advanced undergraduates with strong mathematical backgrounds and consent of instructor and Graduate College.

Course Level Other: PTYS Graduate Elective
(001) Pelletier

PTYS 505B

Core Course

Principles of Planetary Physics (3)

PTYS Graduate Core Course. Quantitative investigation of the physical processes controlling planet formation, the orbital and rotational dynamics of planetary systems, the mechanical and thermal aspects of a planetary interior, and the dynamics of the Earth-Moon and other satellite systems. Course requisites: Classical and quantum mechanics at the level of PHYS 151 and PHYS 242. Sample course syllabus, Matsuyama (PDF)

Course Level Other: PTYS Graduate Core Course

PTYS/ASTR 518

Astronomical Instrumentation (2)

Radiant energy; signals and noise; detectors and techniques for imaging, photometry, polarimetry and spectroscopy. Examples from stellar and planetary astronomy in the x-ray, optical, infrared and radio. Equivalent to ASTR 518.

Course Level: PTYS Graduate Elective
(001) Marrone

PTYS/ATMO 541A

Dynamic Meteorology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Identical to ATMO 541A. ATMO is home department.

Course Level Other: PTYS Graduate Elective
(001) Brunke
(101) Brunke

PTYS/ASTR 550

Origin of the Solar System and Other Planetary Systems (3)

This course will review the physical processes related to the formation and evolution of the protosolar nebula and of protoplanetary disks. In doing that, we will discuss the main stages of planet formation and how different disk conditions impact planetary architectures and planet properties. We will confront the theories of disk evolution and planet formation with observations of circumstellar disks, exoplanets, and the planets and minor bodies in our Solar System. This course is cross-listed with ASTR 550 and may be co-convened with PTYS 450.

Course Level Other: PTYS Graduate Elective

PTYS/GEOS 554

Core Course

Evolution of Planetary Surfaces (3)

PTYS Graduate Core Course. The geologic processes and evolution of terrestrial planet and satellite surfaces including the Galilean, Saturnian, and Uranian satellites. Course includes one or two field trips to Meteor Crater or other locales. Identical to: GEOS 554. PTYS is home department. Usually offered: Spring. Sample course syllabus, Byrne (PDF)

Course Level Other: PTYS Graduate Core Course

PTYS/ASTR/CHEM 588A

Astrochemistry (3)

This astrochemistry course is the study of gas phase and solid state chemical processes that occur in the universe, including those leading to pre-biotic compounds. Topics include chemical processes in dying stars, circumstellar gas, planetary nebulae, diffuse clouds, star-forming regions and proto-planetary discs, as well as planets, satellites, comets and asteroids. Observational methods and theoretical concepts will be discussed. Graduate-level requirements include a project and an oral exam. Identical to ASTR 588A; may be convened with ASTR 488A. ASTR is home department.

Course Level Other: PTYS Graduate Elective
(001) Ziurys

PTYS/ASTR/PHYS 589

Topics in Theoretical Astrophysics (3)

Current topics in theoretical astrophysics in depth, with emphasis on the methodology and techniques of the theorist and the cross-disciplinary nature of astrophysics theory. Example subjects are nuclear astrophysics, hydrodynamics, transient phenomena, planetary interiors and atmospheres, neutron stars, jets and the evolution of star clusters. May be repeated for credit 1 time (maximum 2 enrollments). Identical to ASTR 589 and PHYS 589.

Course Level Other: PTYS Graduate Elective
(001) TBA

PTYS 590

Planetary Geology Field Studies (1)

The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit. Trip is led by a Planetary Sciences faculty member once per semester. Altnerative grading (SPF).

Course Level: PTYS Graduate ElectiveCourse Level Other: PTYS Graduate Elective

PTYS 595B

Special Topics in Planetary Science (1-4)

Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required.  Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries.  Course may be co-convened with PTYS 495B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 4x (or up to 12 units). Regular grades assigned (ABC).

(001) Amy Mainzer | Syllabus

PTYS 595B (001) Fall 2023 is 3 units. Career Development. Class will focus on building the skills needed to find, obtain, and keep a job for degree holders in planetary science and related fields. We will explore the different types of jobs that are available, the funding mechanisms that support them, proposal and resume/CV writing, proposal reviews, and the interview process. We will additionally cover public speaking to both scientific and general audiences. Co-convened with PTYS 495B.

(002) Roger Yelle

PTYS 595B (002) Fall 2023 is 3 units. Radiative Transfer. Radiative transfer is one of the primary processes driving the thermal structure and evolution of planetary atmospheres and an integral part of atmospheric models.  The course will review the opacity of gases and aerosols in planetary atmospheres, techniques for describing these opacities in computationally efficient ways and for calculation of radiative heating/cooling rates.  The course will also describe how radiative transfer calculations are used to interpret remote sensing observations in terms of atmospheric properties.  Familiarity with a programming language such as python, matlab, or fortran is desirable. Topics include: Spectral line shape, absorption of a spectral line, molecular bands and high-frequency calculations, CIA opacity, K-coefficients, other frequency sampling techniques, emergent intensities in LTE, heating rate calculations, aerosol opacities, scattering calculations.