Spring 2024 Graduate Courses

Click on course number within each window for information about sections, syllabi, etc.

Expand all

Core Course

Cosmochemistry (3)

PTYS Graduate Core Course. This course discusses the chemical processes important for the formation of our solar system and that subsequently acted on the objects within the solar system. It also discusses nuclear processes responsible for synthesis of the elements and alteration of isotopic abundances. Sample course syllabus, Haenecour (PDF) Sample course syllabus, Zega (PDF)Sample course syllabus, Barnes (PDF)

Course Level Other: PTYS Graduate Core Course

Physics of the Earth (3)

Fundamentals of the physics of the solid earth, including thermodynamics, rheology, geomagnetism, gravity, and plate tectonics. Graduate-level requirements include a term paper in publication format on some aspect of a major course topic. Identical to: GEOS 519; GEOS is home department. May be convened with: PTYS 419. Usually offered: Spring.

Course Level Other: PTYS Graduate Elective
(001) Kiser

Moons (3)

We study the natural satellites (moons) of planets, starting with a survey of our own solar system, and introduce the principles and theories of their formation and evolution. How do Galilean satellites form? What causes Triton’s plumes? Is the Saturn system young? How old is the Moon? Why are binary asteroids and KBOs so common? Is Phobos falling apart? Then we will consider the science questions motivating current and planned missions of exploration, and the discovery of exomoons. The class will emphasize quantitative approaches and will therefore rely upon a common understanding of mechanics and calculus. Familiarity with geology is helpful but is not required. May be co-convened with PTYS 423.

Course Level: PTYS Graduate Elective

The Chemical Evolution of Earth (3)

Chemical differentiation and evolution of Earth's mantle and crust according to major-element, trace-element and isotopic characteristics of neodymium, hafnium, strontium, lead and other isotopes. Graduate-level requirements will include an additional paper. Course includes 1 or more field trips. Identical to GEOS 530. GEOS is home department.

Course Level Other: PTYS Graduate Elective
(001) Ducea

Dynamic Metereology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Graduate-level requirements include a more quantitative and thorough understanding of the subject matter. ATMO is home department.

Course Level Other: PTYS Graduate Elective
(001) Atallah

Mars (3)

In-depth class about the planet Mars, including origin and evolution, geophysics, geology, atmospheric science, climate change, the search for life, and the history and future of Mars exploration. There will be guest lectures from professors and research scientists with expertise about aspects of Mars. There will be lots of discussion of recent results and scientific controversies about Mars. Graduate-level requirements include the completion of a research project that will be presented in class as well as a report. The research project could be analysis of Mars datasets, a laboratory experiment, or new theoretical modeling. Regular grades are awarded for this course: A B C D E. Prerequisite(s): PTYS 411, Geology of the Solar System is recommended but not required. Identical to: ASTR 542, GEOS 542. May be convened with: PTYS 442.

Course Level Other: PTYS Graduate Elective

Stars and Planets (3)

This course will explore the physical principles that govern the structure and evolution of stars and planets. Topics covered will include stellar structure, energy generation and transport, and equations of state. Applying physical models and computational methods, fundamental properties of stars and planets will be derived, and compared with observational constraints. Identical to: ASTR 545; ASTR is home department. Usually offered: Fall.

Course Level: PTYS Graduate Elective
Course Level Other: PTYS Graduate Elective
(001) Kratter

Core Course

Solar System Dynamics (3)

PTYS Graduate Core Course. Dynamical processes affecting the orbital evolution of planets, asteroids, and satellites, and the rotational evolution of solid bodies. Emphasizes modern nonlinear dynamics and chaos. Identical to ASTR 553. Course requisites: MATH 254, PHYS 422, or consult department before enrolling. PTYS is home department. Sample course syllabus, Malhotra (PDF)

Course Level Other: PTYS Graduate Core Course

Planetary Astrobiology (3)

This course will explore the processes related to planet formation, the properties of planets and the planetary conditions required for the emergence of life. We will study the formation of our Solar System and exoplanetary systems, the distribution and properties of exoplanets, and the potential habitability of other planets/moons in our system or extrasolar systems. The course will also review science cases and possible future astrobiology studies, both in site and via remote sensing, of astrobiologically relevant environments. Toward the end of the semester a few guest lectures will highlight particularly exciting and timely topics. This course is identical to ASTR 575; may be co-convened with ASTR 475. ASTR is home department.

Course Level Other: PTYS Graduate Elective

Writing Across the Space Sciences (3)

The purpose of this class is to strengthen the writing skills of the student along the entire range of writing, from technical scientific writing in the space sciences to popular articles about science. It has the secondary purpose of preparing the student for the wide variety of occasions when communication skills, written and verbal, will be required in the professional practice of the space sciences. Typically offered: Fall. ASTR is home department.

Course Level: PTYS Graduate Elective
(001) Hamden

Boundary Layer Meteorology & Surface Processes (3)

Designed for students in the atmospheric sciences, hydrology and related fields. It provides a framework for understanding the basic physical processes that govern mass and heat transfer in the atmospheric boundary layer and the vegetated land surface. In addition to the theoretical part of the course, there is a strong focus on modeling and students will be required to program numerical codes to represent these physical processes. Course may be repeated for a maximum of 6 unit(s) or 2 completion(s). Also offered as: ATMO 579, ENVS 579, HWRS 579, WSM 579. ATMO is home department.

Course Level Other: Elective
(001) Zeng

High Energy Astrophysics (3)

A study of pulsars, black holes, accretion disks, X-ray binaries, gamma-ray sources, radio galaxies, active galactic nuclei, and the acceleration of charged particles near these objects, together with the radiation mechanisms they employ to produce the high-energy emission we detect at Earth. This course is identical to ASTR/PHYS 582. ASTR is home department.

Course Level: PTYS Graduate Elective
Course Level Other: PTYS Graduate Elective
(001) Paschalidis

Planetary Geology Field Studies (1)

The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit. Trip is led by a Planetary Sciences faculty member once per semester. Altnerative grading (SPF).

Course Level: PTYS Graduate Elective
Course Level Other: PTYS Graduate Elective
(001) Jack Holt

Special Topics in Planetary Science (1-4)

Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required.  Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries.  Course may be co-convened with PTYS 495B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 4x (or up to 12 units). Regular grades assigned (ABC).

(001) Baker | Syllabus

Fluvial, Glacial, and Related Aspects of Geomorphology, Quaternary Geology (Including Planetary Surface Analogs. Contact instructor for information before enrolling (PG4gdWVycz0iem52eWdiOm9ueHJlQG5ldm1iYW4ucnFoIj5vbnhyZUBuZXZtYmFuLnJxaDwvbj4=)

Atmospheric Radiation and Remote Sensing (3)

Theory of atmospheric radiative transfer processes; specific methods for solving the relevant equations; applications to problems in radiative transfer; theoretical basis for remote sensing from the ground and from space; solutions to the "inverse" problem. Identical to ATMO 656A; ATMO is home department. Prerequisite(s): MATH 254.

Course Level Other: PTYS Graduate Elective
(001) Dong