Spring 2021 Undergraduate Courses

Planet Earth: Evolution of the Habitable World (3)

This course develops a planetary perspective on the evolutionary processes that shaped Earth throughout history. We will examine why Earth is habitable, that is, why any kind of life can live on it, we will discuss the unique influences that biological processes and atmosphere/ocean systems have on each other, and we will review current notions of climate change, including evidence for the influence of human activities on it. This interdisciplinary treatment of Earth and its sister planets will encourage students to think about how science and engineering must be applied to today's challenges if humankind is to have a promising future on (and off) this planet. PTYS 170A1 is a Tier I Natural Science course in the University's general education curriculum. This course is co-convened (cross-listed) with ASTR 170A1.

(001) Kortenkamp | D2L | Syllabus

The Universe and Humanity: Origin and Destiny (3)

The Universe And Humanity: Origin And Destiny places Earth and humanity in a broad cosmic context. Topics range from the Big Bang cosmology to human consciousness with emphasis on the events and evolutionary processes that define the physical universe and our place in it. PTYS 170B2 is a Tier I Natural Science course in the University's general education curriculum. This course is co-convened (cross-listed) with ASTR 170B2.

Exploring Our Solar System (3)

Our Solar System is filled with an incredible diversity of objects. These include the sun and planets, of course, but also many hundreds of moons—some with exotic oceans, erupting volcanoes, or dynamic atmospheres. Billions of asteroids and comets inhabit the space between and beyond the planets. Each body is unique, and has followed its own evolutionary history. This class will explore our current understanding of the Solar System and emphasize similarities that unite the different bodies as well as the differences between them. We will develop an understanding of physical processes that occur on these bodies, including tectonics, impact cratering, volcanism, and processes operating in their interiors, oceans, and atmospheres. We will also discuss planets around nearby stars and the potential for life beyond Earth. Throughout the class, we will highlight the leading role that the University of Arizona has played in exploring our Solar System.

Course Objectives: Students who engage with this course will develop a broad understanding of many fundamental concepts in planetary science and gain an appreciation for the discoveries and reasoning that leads to this understanding. They will learn to collect their own data as well as gather relevant supporting information from a variety of outside sources. Throughout the semester students will be demonstrating their grasp of course material by composing written assignments at a level their peers outside of the class will understand (a.k.a., Students on the Street, or SOS). During the term project students will be assisted in working with telescopes to obtain astronomical images using their own smart phone cameras. Students will learn during in-class workshops how to use their own images to then construct a time-lapse animation. Expected Learning Outcomes: Upon successful completion of this course students will be able to (1) access and use information and data from a variety of sources, including their own activities, (2) critically evaluate this information and data for reliability in supporting fundamental concepts, (3) effectively communicate an understanding of these concepts to their SOS peers by synthesizing the information and data they have gathered, (4) demonstrate practical skills with a variety of software, including Word, Excel, Keynote, PowerPoint, and image/video editing apps.

PTYS 206 is cross-listed with ASTR 206. Course requisites: Two courses from Tier One, Natural Sciences.

Teaching Teams Professional Development Workshop (3)

Professional development for undergraduates of all disciplines in areas of peer instruction and mentoring, leadership, public speaking, group dynamics, and interview skills; also assists students with preceptorships.

(001) Kortenkamp, Edwards | Course Page

PTYS 297A (001) for Spring 2021 is Flex In-Person.

(002) Kortenkamp, Edwards | Course Page

PTYS 297A for Spring 2021 is online only, iCourse.

(003) Kortenkamp, Edwards | Course Page

PTYS 297A (003) for Spring 2021 is Flex In-Person.

Teaching Teams Internship (3)

Internship for students who have completed PTYS 297A (formerly LASC 297A), with at least one semester as a preceptor of a university-level course) to continue their reaching team education. Course covers elements of learning environments, communication skills, providing feedback, performance evaluation, and cooperative learning strategies.

(001) Kortenkamp, Edwards | Course Page

PTYS 393 (001) for Spring 2021 is Flex In-Person.

Professional Development in a Digital Age (2-3)

Professional development in areas that are affected by transition to digital formats. Students will learn about elevator pitches, communication, utilizing professional technologies, resumes and curriculum vitaes, online resumes and portfolios, professionalism within social media, searching for jobs online, and interviewing.

(001) Kortenkamp, Edwards | Course Page | Syllabus

PTYS 397A (001) for Spring 2021 is Flex In-Person.

Physics of the Solar System (3)

Survey of planetary physics, planetary motions, planetary interiors, geophysics, planetary atmospheres, asteroids, comets, origin of the solar system. Prerequisites: PHYS 142 or 251. PTYS 403 is a required course for the PTYS Minor. Equivalent to ASTR/GEOS/PHYS 403.

(001) Yelle | D2L | Syllabus

Mars (3)

In-depth class about the planet Mars, including origin and evolution, geophysics, geology, atmospheric science, climate change, the search for life, and the history and future of Mars exploration. There will be guest lectures from professors and research scientists with expertise about aspects of Mars. There will be lots of discussion of recent results and scientific controversies about Mars. Graduate-level requirements include the completion of a research project that will be presented in class as well as a report. The research project could be analysis of Mars datasets, a laboratory experiment, or new theoretical modeling. Regular grades are awarded for this course: A B C D E. Prerequisite(s): PTYS 411, Geology of the Solar System is strongly recommended but not required. Equivalent to/crosslisted: ASTR 442, GEOS 442. May be convened with: PTYS 542.

Advanced Teaching Teams Internship (3)

This advanced internship is for students who have completed PTYS 393. Course covers elements of learning environments, communication skills, providing feedback, performance evaluation, and cooperative learning strategies; it requires students to peer lead workshop sections within the Teaching Teams Program alongside a faculty/staff mentor.

(001) Kortenkamp/Edwards | D2L

Special Topics in Planetary Science (2-3)

Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required.  Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries.  Course may be co-convened with PTYS 595B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 3x (or up to 9 units).

(001) Lauretta | D2L | Syllabus

3 units. Spacecraft Mission Design and Implementation.

Description of Course

This course will provide an overview of NASA and international planetary exploration. The focus is on the development and implementation of planetary robotic exploration missions. The instructor is the Principal Investigator for the NASA OSIRIS-REx mission, which successfully collected a sample from near-Earth asteroid Bennu in October 2020. All aspects of mission development and operations will be covered including political, scientific, engineering, management, and resources.

Course Format and Teaching Methods

The course will be a combination of seminar-style lectures, assigned reading, and group projects. The group projects will focus on the development of science and engineering requirements and design for a planetary exploration mission. Final grades will be calculated based on classroom attendance, participation in in-class discussion, and the quality of the work demonstrated in the group-project reports.

Course Objectives and Expected Learning Outcomes

The primary outcome of this course is for the students to gain an understanding of all aspects of planetary mission design. Spacecraft mission development will be presented as a multi-faceted challenge that involves political processes, scientific investigation, engineering disciplines, and project management.