Fall 2021 Graduate Courses

Click on course number within each window for information about sections, syllabi, etc.

Expand all

Core Course

Principles of Planetary Physics (3)

PTYS Graduate Core Course. Quantitative investigation of the physical processes controlling planet formation, the orbital and rotational dynamics of planetary systems, the mechanical and thermal aspects of a planetary interior, and the dynamics of the Earth-Moon and other satellite systems. Sample course syllabus, Matsuyama (PDF)

(001) Matsuyama | D2L | Syllabus

Instrumentation and Statistics (2)

Radiant energy; signals and noise; detectors and techniques for imaging, photometry, polarimetry and spectroscopy. Examples from stellar and planetary astronomy in the x-ray, optical, infrared and radio. Equivalent to ASTR 518.

(001) Hamden

The Chemical Evolution of Earth (3)

Chemical differentiation and evolution of Earth's mantle and crust according to major-element, trace-element and isotopic characteristics of neodymium, hafnium, strontium, lead and other isotopes. Graduate-level requirements will include an additional paper. Course includes 1 or more field trips. Identical to GEOS 530. GEOS is home department.

(001) Ducea

Dynamic Meteorology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Identical to ATMO 541A. ATMO is home department.

(001) Zeng

Origin of the Solar System and Other Planetary Systems (3)

This course will review the physical processes related to the formation and evolution of the protosolar nebula and of protoplanetary disks. In doing that, we will discuss the main stages of planet formation and how different disk conditions impact planetary architectures and planet properties. We will confront the theories of disk evolution and planet formation with observations of circumstellar disks, exoplanets, and the planets and minor bodies in our Solar System. This course is cross-listed with ASTR 550 and may be co-convened with PTYS 450.

(001) Pascucci | Syllabus

Core Course

Evolution of Planetary Surfaces (3)

PTYS Graduate Core Course. The geologic processes and evolution of terrestrial planet and satellite surfaces including the Galilean and Saturnian and Uranian satellites. Course includes one or two field trips to Meteor Crater or other locales. Identical to: GEOS 554. PTYS is home department. Usually offered: Spring. Sample course syllabus, Byrne (PDF)

Astrochemistry (3)

This astrochemistry course is the study of gas phase and solid state chemical processes that occur in the universe, including those leading to pre-biotic compounds. Topics include chemical processes in dying stars, circumstellar gas, planetary nebulae, diffuse clouds, star-forming regions and proto-planetary discs, as well as planets, satellites, comets and asteroids. Observational methods and theoretical concepts will be discussed. Graduate-level requirements include a project and an oral exam. Identical to ASTR 588A; may be convened with ASTR 488A. ASTR is home department.

(001) Ziurys

Planetary Geology Field Studies (1)

The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit. Trip is led by a Planetary Sciences faculty member once per semester. Altnerative grading (SPF).

(001) Hamilton | D2L | Syllabus

Special Topics in Planetary Science (1-4)

Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required.  Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries.  Course may be co-convened with PTYS 495B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 4x (or up to 12 units). Regular grades assigned (ABC).

(002) Barnes, Haenecour | D2L | Syllabus

2021 Fall PTYS 595B Section 002, 4 Units, Isotope Cosmochemistry. Isotopic variations among extraterrestrial materials provide great insights into the origin and evolution of the solar system. In this course, we will take a system-by-system approach to gain knowledge of the processes that took place in the molecular cloud, during the formation of our solar system and its subsequent evolution. Students will be introduced to the extraterrestrial materials available for laboratory study, the sample preparation techniques and methods used to measure isotopic compositions, and how to use and interpret cosmochemical data.

(003) Holt | Syllabus

2021 Fall PTYS 595B Section 003, 1 Unit, Ices of the Solar System. This seminar style course will cover current topics regarding ice on planetary bodies ranging from Mercury, Earth and Mars, to icy moons and Pluto. Students will help choose specific papers and lead discussions on them.  

Planetary Surface Processes Seminar (1)

This seminar course will focus on discussion of planetary surfaces and their evolution, including geology of rocky planets and moons, icy surfaces and moons, regolith development, surface-atmosphere interactions, sub-surface structure and interiors, and climate change. The course will involve the exchange of scholarly information in a small group setting, including presentations and discussions of student research, reviews of recent science results and discussion of proposal ideas. Students will be expected to lead 1 to 2 presentations and participate in group discussions. This course is intended for graduate students; senior undergraduates may be able to enroll with permission of the instructor. Alternative Grading S, P, F; may be repeated for 10 completions/units.

(001) Carter | D2L | Syllabus