PTYS Graduate Core Course. This course discusses the chemical processes important for the formation of our solar system and that subsequently acted on the objects within the solar system. It also discusses nuclear processes responsible for synthesis of the elements and alteration of isotopic abundances. Sample course syllabus, Haenecour (PDF) Sample course syllabus, Zega (PDF). Sample course syllabus, Barnes (PDF)
Spring 2026 Graduate Courses
Click on course number within each window for information about sections, syllabi, etc.
Mars (3)
In-depth class about the planet Mars, including origin and evolution, geophysics, geology, atmospheric science, climate change, the search for life, and the history and future of Mars exploration. There will be guest lectures from professors and research scientists with expertise about aspects of Mars. There will be lots of discussion of recent results and scientific controversies about Mars. Graduate-level requirements include the completion of a research project that will be presented in class as well as a report. The research project could be analysis of Mars datasets, a laboratory experiment, or new theoretical modeling. Regular grades are awarded for this course: A B C D E. Prerequisite(s): PTYS 411, Geology of the Solar System is recommended but not required. Identical to: ASTR 542, GEOS 542. May be convened with: PTYS 442.
Core Course
Solar System Dynamics (3)
PTYS Graduate Core Course. Dynamical processes affecting the orbital evolution of planets, asteroids, and satellites, and the rotational evolution of solid bodies. Emphasizes modern nonlinear dynamics and chaos. Identical to ASTR 553. Course requisites: MATH 254, PHYS 422, or consult department before enrolling. PTYS is home department. Sample course syllabus, Malhotra (PDF)
Planetary Geology Field Studies (1)
The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit. Trip is led by a Planetary Sciences faculty member once per semester. Alternative grading (SPF).