Spring 2020 Graduate Courses

Core Course

Cosmochemistry (3)

PTYS Graduate Core Course. This course discusses the chemical processes important for the formation of our solar system and that subsequently acted on the objects within the solar system. It also discusses nuclear processes responsible for synthesis of the elements and alteration of isotopic abundances. Sample course syllabus, Zega (PDF)

(001) Barnes

(001) Barnes

Planetary Climate (3)

Physical and chemical processes governing the climate of planets. Climate feedbacks and stability; greenhouse e?ect, ice-albedo feedback, cloud feedbacks. E?ect of atmospheric circulation on climate. Milankovitch cycles and ice ages. Long-term atmospheric evolution; runawaygreenhouse,SnowballEarth, atmospheric loss/collapse, faint young Sun problem. Interaction of climate with geology/biology. Observable signatures. Habitable zones. Application to Earth, Mars, Venus, Titan, and habitability of extrasolar planets.

(001) Showman

(001) Showman

Nanoscale Analysis of Materials Using Transmission Electron Microscopy (3)

This course discusses the theory and practice of transmission electron microscopy as applied crystalline solids. Among the topics to be covered include electron scattering and diffraction, image formation, energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy. Weekly lectures will be accompanied by several laboratory practical sessions. Emphasis will be placed on quantitative analysis of material structure and composition as well as the identification of unknown materials. Equivalent to: MSE 526; PTYS is home department.

(001) Zega

Core Course

Solar System Dynamics (3)

PTYS Graduate Core Course. Dynamical processes affecting the orbital evolution of planets, asteroids, and satellites, and the rotational evolution of solid bodies. Emphasizes modern nonlinear dynamics and chaos. Identical to ASTR 553. PTYS is home department. Sample course syllabus, Malhotra (PDF)

(001) Malhotra

(001) Malhotra

Plasma Physics with Astrophysical and Solar System Applications (3)

The goal of this course is to present an introduction to fundamental plasma physics and magnetohydrodynamics, beginning with kinetic theory. The various important limits including the vlasov equation and magnetohydrodynamics will be derived. Applications will be mostly from astrophysics and the solar system. These will include the main dynamical processes in the solar atmosphere, interplanetary medium, magnetospheres, interstellar medium, blast waves, accretion disks, etc. The emphasis throughout will be on basic physical processes and the various approximations used in their application to concrete problems. Identical to ASTR 558, PHYS 558.

(001) Giacalone

(001) Giacalone

Planetary Geology Field Studies (1)

The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit. Trip is led by a Planetary Sciences faculty member once per semester. Altnerative grading (SPF).

(001) Byrne | Course Page

(001) Byrne

Special Topics in Planetary Science (1-4)

Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required.  Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries.  Course may be co-convened with PTYS 495B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 4x (or up to 12 units). Regular grades assigned (ABC).

(001) Asphaug

3 units. Topic is Satellites.

(001) Carter

(001) Asphaug

Great Papers

(002) Muralidharan, Zega

Planetary Materials

(003) Carter, Holt

Planetary Radar

(004) Zega

Planetary Surface Processes Seminar (1)

This seminar course will focus on discussion of planetary surfaces and their evolution, including geology of rocky planets and moons, icy surfaces and moons, regolith development, surface-atmosphere interactions, sub-surface structure and interiors, and climate change. The course will involve the exchange of scholarly information in a small group setting, including presentations and discussions of student research, reviews of recent science results and discussion of proposal ideas. Students will be expected to lead 1 to 2 presentations and participate in group discussions. This course is intended for graduate students; senior undergraduates may be able to enroll with permission of the instructor. Alternative Grading S, P, F; may be repeated for 10 completions/units.

(001) Carter