Spring 2019 Graduate Courses

Physics of the Solar System (3)

Survey of planetary physics, planetary motions, planetary interiors, geophysics, planetary atmospheres, asteroids, comets, origin of the solar system. Graduate-level requirements include an in-depth research paper on a selected topic and an oral class presentation. This course does not count toward the major requirements in Planetary Sciences. Equivalent to: ASTR 503, GEOS 503, and PHYS 503 (and cross-listed); may be co-convened with PTYS 403. PTYS is home department.

Core Course

Chemistry of the Solar System (3)

PTYS Graduate Core Course. Provides an overview of the gas and ice chemistry in planetary environments including molecular structure, spectroscopy, kinetics. The course describes how these physical processes are manifest in the diverse solar system environments. The instructional level is aimed at beginning graduate students with an adequate background comparable to that obtained from advance undergraduate courses in physics and chemistry. Knowledge of vector calculus and elementary differential equations is assumed. Successful students will be able to understand current research in planetary chemistry and will be well prepared for more detailed studies.
Sample course syllabus, Pascucci (PDF)

 

Core Course

Atmospheres and Remote Sensing (3)

PTYS Graduate Core Course. Structure, composition, and evolution of atmospheres; atomic and molecular spectroscopy; radiative transfer and spectral line formatting.
Sample course syllabus, Griffith (PDF)
Sample course syllabus, Showman (PDF)
Sample course syllabus, Yelle (PDF)

(001) Showman | Syllabus

Dynamic Metereology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Graduate-level requirements include a more quantitative and thorough understanding of the subject matter. ATMO is home department.

(001) Castro

Physics of High Atmospheres (3)

Physical properties of upper atmospheres, including gaseous composition, temperature and density, ozonosphere, and ionospheres, with emphasis on chemical transformations and eddy transport. Identical to ATMO 544. PTYS is home department.

Exoplanets: Discovery and Characterization (3)

This course will cover observational and theoretical ideas pertinent to planets orbiting other stars. Discovery and characterization techniques will be emphasized along with associated theory. In-class format will alternate from traditional lectures, guest lectures by local or visiting experts, and student-lead presentations.

(001) Barman | Syllabus

Planetary Astrobiology (3)

This course will explore the processes related to planet formation, the properties of planets and the planetary conditions required for the emergence of life. We will study the formation of our Solar System and exoplanetary systems, the distribution and properties of exoplanets, and the potential habitability of other planets/moons in our system or extrasolar systems. The course will also review science cases and possible future astrobiology studies, both in site and via remote sensing, of astrobiologically relevant environments. Toward the end of the semester a few guest lectures will highlight particularly exciting and timely topics. This course is identical to ASTR 575; may be co-convened with ASTR 475. ASTR is home department.

(001) Eisner/Apai

High Energy Astrophysics (2)

A study of pulsars, black holes, accretion disks, X-ray binaries, gamma-ray sources, radio galaxies, active galactic nuclei, and the acceleration of charged particles near these objects, together with the radiation mechanisms they employ to produce the high-energy emission we detect at Earth. This course is identical to ASTR 582. ASTR is home department.

(001) Ozel

Astrochemistry (3)

This astrochemistry course is the study of gas phase and solid state chemical processes that occur in the universe, including those leading to pre-biotic compounds. Topics include chemical processes in dying stars, circumstellar gas, planetary nebulae, diffuse clouds, star-forming regions and proto-planetary discs, as well as planets, satellites, comets and asteroids. Observational methods and theoretical concepts will be discussed. Graduate-level requirements include a project and an oral exam. Identical to ASTR 588A; may be convened with ASTR 488A. ASTR is home department.

(001) Ziurys

Planetary Geology Field Studies (1)

The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit. Trip is led by a Planetary Sciences faculty member once per semester. Altnerative grading (SPF).

Special Topics in Planetary Science (1-4)

Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required.  Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries.  Course may be co-convened with PTYS 495B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 4x (or up to 12 units). Regular grades assigned (ABC).

(001) McEwen | Course Page | Syllabus

This 1-credit class will be a seminar on the Galilean satellites of Jupiter, four large worlds with complex orbital, tidal, and magnetospheric interactions.  The course objective is for students to gain a first-order understanding of these worlds, and a more detailed understanding of some aspect of these satellites.

(002) Asphaug | Syllabus

PTYS 595B (002), 3 units, Planet-Forming Collisions. The terrestrial planets grew in a series of massive late-stage collisions. Unlike impact cratering there is no impact locus when the colliding bodies are similar-sized, and the process is governed by angular momentum and self-gravity as much as by shocks and equations of state. The first half of the course will be lecture-based providing an essential background leading up to the major current science questions, and the second half will be focused on research projects culminating in final presentations.