2021 Spring

Planetary Geology Field Studies (1)

The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit. Trip is led by a Planetary Sciences faculty member once per semester. Altnerative grading (SPF).

(001) Byrne | Course Page

(001) Holt

Physics of the Solar System (3)

Survey of planetary physics, planetary motions, planetary interiors, geophysics, planetary atmospheres, asteroids, comets, origin of the solar system. Graduate-level requirements include an in-depth research paper on a selected topic and an oral class presentation. This course does not count toward the major requirements in Planetary Sciences. Equivalent to: ASTR 503, GEOS 503, and PHYS 503 (and cross-listed); may be co-convened with PTYS 403. PTYS is home department.

(001) Yelle

Physics of the Solar System (3)

Survey of planetary physics, planetary motions, planetary interiors, geophysics, planetary atmospheres, asteroids, comets, origin of the solar system. Prerequisites: PHYS 142 or 251. PTYS 403 is a required course for the PTYS Minor. Equivalen to ASTR/GEOS/PHYS 403.

(001) Giacalone

(001) Yelle

Mars (3)

In-depth class about the planet Mars, including origin and evolution, geophysics, geology, atmospheric science, climate change, the search for life, and the history and future of Mars exploration. There will be guest lectures from professors and research scientists with expertise about aspects of Mars. There will be lots of discussion of recent results and scientific controversies about Mars. Graduate-level requirements include the completion of a research project that will be presented in class as well as a report. The research project could be analysis of Mars datasets, a laboratory experiment, or new theoretical modeling. Regular grades are awarded for this course: A B C D E. Prerequisite(s): PTYS 411, Geology of the Solar System is strongly recommended but not required. Identical to: ASTR 542, GEOS 542. May be convened with: PTYS 442.

(001) McEwen

Core Course

Atmospheres and Remote Sensing (3)

PTYS Graduate Core Course. Structure, composition, and evolution of atmospheres; atomic and molecular spectroscopy; radiative transfer and spectral line formatting.
Sample course syllabus, Griffith (PDF)
Sample course syllabus, Showman (PDF)
Sample course syllabus, Yelle (PDF)

(001) Griffith

(001) Griffith

Planet Earth: Evolution of the Habitable World (3)

This course develops a planetary perspective on the evolutionary processes that shaped Earth throughout history. We will examine why Earth is habitable, that is, why any kind of life can live on it, we will discuss the unique influences that biological processes and atmosphere/ocean systems have on each other, and we will review current notions of climate change, including evidence for the influence of human activities on it. This interdisciplinary treatment of Earth and its sister planets will encourage students to think about how science and engineering must be applied to today's challenges if humankind is to have a promising future on (and off) this planet. PTYS 170A1 is a Tier I Natural Science course in the University's general education curriculum. This course is co-convened (cross-listed) with ASTR 170A1.

(001) Kortenkamp

(001) Kortenkamp

Exploring Our Solar System (3)

Our Solar System is filled with an incredible diversity of objects. These include the sun and planets, of course, but also many hundreds of moons—some with exotic oceans, erupting volcanoes, or dynamic atmospheres. Billions of asteroids and comets inhabit the space between and beyond the planets. Each body is unique, and has followed its own evolutionary history. This class will explore our current understanding of the Solar System and emphasize similarities that unite the different bodies as well as the differences between them. We will develop an understanding of physical processes that occur on these bodies, including tectonics, impact cratering, volcanism, and processes operating in their interiors, oceans, and atmospheres. We will also discuss planets around nearby stars and the potential for life beyond Earth. Throughout the class, we will highlight the leading role that the University of Arizona has played in exploring our Solar System.

Course Objectives: Students who engage with this course will develop a broad understanding of many fundamental concepts in planetary science and gain an appreciation for the discoveries and reasoning that leads to this understanding. They will learn to collect their own data as well as gather relevant supporting information from a variety of outside sources. Throughout the semester students will be demonstrating their grasp of course material by composing written assignments at a level their peers outside of the class will understand (a.k.a., Students on the Street, or SOS). During the term project students will be assisted in working with telescopes to obtain astronomical images using their own smart phone cameras. Students will learn during in-class workshops how to use their own images to then construct a time-lapse animation. Expected Learning Outcomes: Upon successful completion of this course students will be able to (1) access and use information and data from a variety of sources, including their own activities, (2) critically evaluate this information and data for reliability in supporting fundamental concepts, (3) effectively communicate an understanding of these concepts to their SOS peers by synthesizing the information and data they have gathered, (4) demonstrate practical skills with a variety of software, including Word, Excel, Keynote, PowerPoint, and image/video editing apps.

PTYS 206 is cross-listed with ASTR 206. Course requisites: Two courses from Tier One, Natural Sciences.

Core Course

Chemistry of the Solar System (3)

PTYS Graduate Core Course. Provides an overview of the gas and ice chemistry in planetary environments including molecular structure, spectroscopy, kinetics. The course describes how these physical processes are manifest in the diverse solar system environments. The instructional level is aimed at beginning graduate students with an adequate background comparable to that obtained from advance undergraduate courses in physics and chemistry. Knowledge of vector calculus and elementary differential equations is assumed. Successful students will be able to understand current research in planetary chemistry and will be well prepared for more detailed studies.
Sample course syllabus, Pascucci (PDF)

 

(001) Pascucci

(001) Pascucci

Meteorites (3)

Classification; chemical, mineralogical and isotopic composition; cosmic abundances; ages; interaction with solar and cosmic radiation; relation to comets and asteroids. Prerequisite(s): PTYS 510. Identical to: GEOS 520. Usually offered: Spring.

(001) Barnes

Mars (3)

In-depth class about the planet Mars, including origin and evolution, geophysics, geology, atmospheric science, climate change, the search for life, and the history and future of Mars exploration. There will be guest lectures from professors and research scientists with expertise about aspects of Mars. There will be lots of discussion of recent results and scientific controversies about Mars. Graduate-level requirements include the completion of a research project that will be presented in class as well as a report. The research project could be analysis of Mars datasets, a laboratory experiment, or new theoretical modeling. Regular grades are awarded for this course: A B C D E. Prerequisite(s): PTYS 411, Geology of the Solar System is strongly recommended but not required. Equivalent to/crosslisted: ASTR 442, GEOS 442. May be convened with: PTYS 542.

(001) McEwen

Physics of High Atmospheres (3)

Physical properties of upper atmospheres, including gaseous composition, temperature and density, ozonosphere, and ionospheres, with emphasis on chemical transformations and eddy transport. Identical to ATMO 544. PTYS is home department.

(001) Koskinen

Special Topics in Planetary Science (1-4)

Course will emphasize emerging and current topical research in Planetary Science; course will be offered as needed or required.  Sample course topics might include an active spacecraft mission, an emerging research area, or new discoveries.  Course may be co-convened with PTYS 495B. Graduate-level requirements may include an additional project for graduate credit and extra questions on exams, depending on the course/topic taught. Course may be repeated for credit 4x (or up to 12 units). Regular grades assigned (ABC).

(001) Asphaug

(002) Malhotra

(003) Lauretta

The Universe and Humanity: Origin and Destiny (3)

The Universe And Humanity: Origin And Destiny places Earth and humanity in a broad cosmic context. Topics range from the Big Bang cosmology to human consciousness with emphasis on the events and evolutionary processes that define the physical universe and our place in it. PTYS 170B2 is a Tier I Natural Science course in the University's general education curriculum. This course is co-convened (cross-listed) with ASTR 170B2.

(001) Haenecour

Planetary Surface Processes Seminar (1)

This seminar course will focus on discussion of planetary surfaces and their evolution, including geology of rocky planets and moons, icy surfaces and moons, regolith development, surface-atmosphere interactions, sub-surface structure and interiors, and climate change. The course will involve the exchange of scholarly information in a small group setting, including presentations and discussions of student research, reviews of recent science results and discussion of proposal ideas. Students will be expected to lead 1 to 2 presentations and participate in group discussions. This course is intended for graduate students; senior undergraduates may be able to enroll with permission of the instructor. Alternative Grading S, P, F; may be repeated for 10 completions/units.

(001) Carter

Remote Sensing of Planetary Surfaces (4)

This graduate course will focus on the use of remote sensing in the study of rocky and icy planetary surfaces.It is not a science course, but rather intended to provide technical knowledge of how instruments work and practical techniques to deal with their datasets. In this course, we will cover how different types of remote-sensing instruments work in theory and practice along with case studies (student-led) of specific planetary science instruments.  We will discuss what datasets are generated by these instruments, their limitations and where they can be located. Lab sessions will provide experience in how these data are processed, visualized and intercompared. The class consists of two lectures and a 2.5-hour lab session each week. Cross-listed with GEOS, equivalent to GEOS 551.

(001) Byrne

(001) Byrne

Nanoscale Analysis of Materials Using Transmission Electron Microscopy (3)

This course discusses the theory and practice of transmission electron microscopy as applied crystalline solids. Among the topics to be covered include electron scattering and diffraction, image formation, energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy. Weekly lectures will be accompanied by several laboratory practical sessions. Emphasis will be placed on quantitative analysis of material structure and composition as well as the identification of unknown materials. Equivalent to: MSE 526; PTYS is home department.

(001) Zega