2022 Fall

PTYS/ASTR 170A1

Alien Earths (3)

Thousands of planets have been discovered orbiting nearby stars. How many of these worlds can we expect to be Earth-like? We explore this question from the perspective of astronomers, geologists, and historians. We look back at Earth’s geologic history to periods when our planet itself would appear very alien to us today. We study the nearby planets Venus and Mars, which were once more Earth-like than today. We discuss not only the evolution of Earth, Venus, and Mars as habitable worlds but also how human understanding of these planets has evolved. Finally, we apply these perspectives to the search for alien Earths in our galaxy. This interdisciplinary treatment of Earth, its neighboring planets, and planets being discovered around nearby stars allows us to consider the potentially unique position of Earth as a habitable world not only in space but in time.

Course Level: GenEd: Building Connections, GenEd: Quantitative Reasoning, GenEd: WritingCourse Level Other: Tier I NATS

PTYS/ASTR 170B2

Universe and Humanity: Exploring Our Place in Space (3)

This course places the Earth and humanity in a broad cosmic context and seeks to answer fundamental questions about our surroundings. Where are we and where do we come from? What is matter made of and what processes created it? What are different types of stars like and where does our Sun fit in? What is the role of stars in shaping the cosmos and the planets orbiting them? How did the Sun, the Earth, and the other planets in the solar system form? What are the planets in the solar system like and are there other planetary systems like ours? In addition to exploring these questions, this course will help students to understand how we have arrived at our current view of the universe, with a focus on the scientific method and the history of astronomy.

Course Level: GenEd: Exploring Perspectives - Natural Scientist, GenEd: Quantitative Reasoning, GenEd: WritingCourse Level Other: Tier 1 NATS

PTYS/ASTR 206

Exploring Our Solar System (3)

Our Solar System is filled with an incredible diversity of objects. These include the sun and planets, of course, but also many hundreds of moons—some with exotic oceans, erupting volcanoes, or dynamic atmospheres. Billions of asteroids and comets inhabit the space between and beyond the planets. Each body is unique, and has followed its own evolutionary history. This class will explore our current understanding of the Solar System and emphasize similarities that unite the different bodies as well as the differences between them. We will develop an understanding of physical processes that occur on these bodies, including tectonics, impact cratering, volcanism, and processes operating in their interiors, oceans, and atmospheres. We will also discuss planets around nearby stars and the potential for life beyond Earth. Throughout the class, we will highlight the leading role that the University of Arizona has played in exploring our Solar System.

Course Objectives: Students who engage with this course will develop a broad understanding of many fundamental concepts in planetary science and gain an appreciation for the discoveries and reasoning that leads to this understanding. They will learn to collect their own data as well as gather relevant supporting information from a variety of outside sources. Throughout the semester students will be demonstrating their grasp of course material by composing written assignments at a level their peers outside of the class will understand (a.k.a., Students on the Street, or SOS). During the term project students will be assisted in working with telescopes to obtain astronomical images using their own smart phone cameras. Students will learn during in-class workshops how to use their own images to then construct a time-lapse animation. Expected Learning Outcomes: Upon successful completion of this course students will be able to (1) access and use information and data from a variety of sources, including their own activities, (2) critically evaluate this information and data for reliability in supporting fundamental concepts, (3) effectively communicate an understanding of these concepts to their SOS peers by synthesizing the information and data they have gathered, (4) demonstrate practical skills with a variety of software, including Word, Excel, Keynote, PowerPoint, and image/video editing apps.

Course Level: GenEd: Exploring Perspectives - Natural Scientist, GenEd: Quantitative Reasoning, GenEd: Writing, PTYS Minor ElectiveCourse Level Other: Tier 2 NATS

PTYS/ASTR 212

The Science and Politics of Climate Change (3)

This course explores the science of climate change and the political and commercial issues related to global warming. The first part of the course focuses on the scientific basis of climate change. Students will investigate the concepts and principles required for understanding planetary climates. They will assess the observational evidence for climate change and quantify the relative roles of natural and human drivers in causing it. They will connect and compare recent changes to historical climate trends and examine predictions for the impact of future climate change on the environment and our lives. The second part of the course focuses on the political and commercial issues related to climate change mitigation. Students will analyze policies designed to reduce greenhouse gas emissions and explore their impacts from the perspectives of policymakers, commercial interests and the public.

Course Level: GenEd: Building Connections, GenEd: Quantitative Reasoning, GenEd: Writing, PTYS Minor ElectiveCourse Level Other: Tier 2 NATS

PTYS/ASTR/GEOS 214

Life in the Cosmos (3)

This course explores key questions in astrobiology and planetary science about the origin and evolution of life on Earth and the possibility that such phenomena have arisen elsewhere in the Universe. We examine what it means for a planet to be alive at scales ranging from cellular processes up to global impacts of biological activity. We survey international space-exploration activities to search for life within the Solar System, throughout our Galaxy, and beyond.

Course Level: GenEd: Building Connections, GenEd: Quantitative Reasoning, GenEd: World Cultures & Societies, PTYS Minor ElectiveCourse Level Other: Tier 2 NATS
(002) Dante Lauretta | Syllabus

Section 002 is Honors Section.

PTYS/GEOS 270

Planetary Geoscience (3)

The course introduces to the students the formation and evolution of solar system with a focus on its major bodies—major body evolution and their landforms resulted by geological activities, impact cratering, planetary volcanisms, aeolian and fluvial processes, planetary volatile reservoirs and astrobiological perspectives. GEOS is home department. Enrollment requirement: GEOS 251.

(001) Moitra

PTYS 297A

Teaching Teams Professional Development Workshop (3)

Professional development for undergraduates of all disciplines in areas of peer instruction and mentoring, leadership, public speaking, group dynamics, and interview skills; also assists students with preceptorships.

Course Level Other: Undergraduate Workshop
(001) Steve Kortenkamp, Edwards | Syllabus

PTYS 393

Teaching Teams Internship (3)

Internship for students who have completed PTYS 297A (formerly LASC 297A), with at least one semester as a preceptor of a university-level course) to continue their reaching team education. Course covers elements of learning environments, communication skills, providing feedback, performance evaluation, and cooperative learning strategies.

Course Level Other: Undergraduate Internship
(001) Steve Kortenkamp, Edwards | Syllabus
(002) Steve Kortenkamp, Edwards | Syllabus

PTYS 397A

Professional Development in a Digital Age (2-3)

Professional development in areas that are affected by transition to digital formats. Students will learn about elevator pitches, communication, utilizing professional technologies, resumes and curriculum vitaes, online resumes and portfolios, professionalism within social media, searching for jobs online, and interviewing.

Course Level Other: Undergraduate Workshop
(001) Steve Kortenkamp, Edwards | Syllabus

PTYS 416

Asteroids, Comets and Kuiper Belt Objects (3)

This is an introduction to the "minor planets," the asteroids, comets and Kuiper Belt objects. The focus will be on origin and evolution (including current evolution), as well as techniques of study. It will include an evening at the telescope of an asteroid search program. Graduate-level requirement includes some original work or calculations in the paper/project submitted and to research one of the primary topics and lead the class discussion of it. PTYS 416 may be co-convened with PTYS 516.
 

Course Level: PTYS Minor Elective

PTYS/ASTR 418

Astronomical Instrumentation (2)

Radiant energy; signals and noise; detectors and techniques for imaging, photometry, polarimetry and spectroscopy. Examples from stellar and planetary astronomy in the x-ray, optical, infrared and radio. Equivalent to ASTR 418. ASTR is home department.

Course Level: PTYS Minor Elective
(001) Douglas

PTYS 423

Moons (3)

We study the natural satellites (moons) of planets, starting with a survey of our own solar system, and introduce the principles and theories of their formation and evolution. How do Galilean satellites form? What causes Triton’s plumes? Is the Saturn system young? How old is the Moon? Why are binary asteroids and KBOs so common? Is Phobos falling apart? Then we will consider the science questions motivating current and planned missions of exploration, and the discovery of exomoons. The class will emphasize quantitative approaches and will therefore rely upon a common understanding of mechanics and calculus. Familiarity with geology is helpful but is not required. May be co-convened with PTYS 523.

Course Level: PTYS Minor Elective

PTYS/ATMO 441A

Dynamic Meteorology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Prerequisite: PHYS 426 or consent of instructor. ATMO is home department.

Course Level: PTYS Minor Elective
(001) Atallah

PTYS 493

Advanced Teaching Teams Internship (3)

This advanced internship is for students who have completed PTYS 393. Course covers elements of learning environments, communication skills, providing feedback, performance evaluation, and cooperative learning strategies; it requires students to peer lead workshop sections within the Teaching Teams Program alongside a faculty/staff mentor.

Course Level Other: Undergraduate Internship
(001) Steve Kortenkamp, Edwards | Syllabus
(002) Steve Kortenkamp, Edwards | Syllabus

PTYS 505A

Core Course

Principles of Planetary Physics (3)

PTYS Graduate Core Course. Introductory physics of planetary and interplanetary gases, fluids and plasmas. Thermodynamics, kinetic theory, plasma physics, hydrodynamics, and magnetohydrodynamics with solar-system applications. This includes planetary atmospheres, turbulence, solar wind, solar-system magnetic fields, dynamo theory, and planetary magnetospheres. Students will be expected to be familiar with vector calculus and both ordinary and partial differential equations. In addition, students will be expected to know, or learn, a programming language such as C, Fortran, IDL or MATLAB. Course requisites: Classical and quantum mechanics at the level of PHYS 151 and PHYS 242.  Sample course syllabus, Giacalone (PDF). Sample course syllabus, Klein (PDF).

Course Level Other: PTYS Graduate Core Course

PTYS 512

Core Course

Planetary Global Tectonics (3)

PTYS Graduate Core Course. Application of the physics of solid-state deformation to global tectonics of the terrestrial planets and icy moons of the solar system. Modes of topographic support, isostasy and implications for gravity/topography ratios on one-plate planets. Theory of floating elastic plates as an approximation to the lithosphere. Use of seismic data to determine the interior structure and composition and modes of heat conduction in planets.
Sample course syllabus, Andrews-Hanna (PDF)
 

Course Level Other: PTYS Graduate Core Course

PTYS 516

Asteroids, Comets and Kuiper Belt Objects (3)

This is an introduction to the "minor planets," the asteroids, comets and Kuiper Belt objects. The focus will be on origin and evolution (including current evolution), as well as techniques of study. It will include an evening at the telescope of an asteroid search program. Graduate-level requirement includes some original work or calculations in the paper/project submitted and to research one of the primary topics and lead the class discussion of it. May be co-convened with PTYS 416.

Course Level Other: PTYS Graduate Elective

PTYS/ASTR 518

Astronomical Instrumentation (2)

Radiant energy; signals and noise; detectors and techniques for imaging, photometry, polarimetry and spectroscopy. Examples from stellar and planetary astronomy in the x-ray, optical, infrared and radio. Equivalent to ASTR 518.

Course Level: PTYS Graduate Elective
(001) Douglas

PTYS 523

Moons (3)

We study the natural satellites (moons) of planets, starting with a survey of our own solar system, and introduce the principles and theories of their formation and evolution. How do Galilean satellites form? What causes Triton’s plumes? Is the Saturn system young? How old is the Moon? Why are binary asteroids and KBOs so common? Is Phobos falling apart? Then we will consider the science questions motivating current and planned missions of exploration, and the discovery of exomoons. The class will emphasize quantitative approaches and will therefore rely upon a common understanding of mechanics and calculus. Familiarity with geology is helpful but is not required. May be co-convened with PTYS 423.

Course Level: PTYS Graduate Elective

PTYS/MSE 526

Nanoscale Analysis of Materials Using Transmission Electron Microscopy (3)

This course discusses the theory and practice of transmission electron microscopy as applied crystalline solids. Among the topics to be covered include electron scattering and diffraction, image formation, energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy. Weekly lectures will be accompanied by several laboratory practical sessions. Emphasis will be placed on quantitative analysis of material structure and composition as well as the identification of unknown materials. Equivalent to: MSE 526; PTYS is home department.

Course Level Other: PTYS Graduate Elective
(001) Tom Zega | Syllabus

PTYS/ATMO 541A

Dynamic Meteorology (3)

Thermodynamics and its application to planetary atmospheres, hydrostatics, fundamental concepts and laws of dynamic meteorology. Identical to ATMO 541A. ATMO is home department.

Course Level Other: PTYS Graduate Elective
(001) Atallah
(101) Atallah

PTYS/GEOS 551

Remote Sensing of Planetary Surfaces (4)

This graduate course will focus on the use of remote sensing in the study of rocky and icy planetary surfaces. It is not a science course, but rather intended to provide technical knowledge of how instruments work and practical techniques to deal with their datasets. In this course, we will cover how different types of remote-sensing instruments work in theory and practice along with case studies (student-led) of specific planetary science instruments.  We will discuss what datasets are generated by these instruments, their limitations and where they can be located. Lab sessions will provide experience in how these data are processed, visualized and intercompared. The class consists of two lectures and a 2.5-hour lab session each week. Cross-listed with GEOS, equivalent to GEOS 551.

Course Level: PTYS Graduate ElectiveCourse Level Other: PTYS Graduate Elective

PTYS 568

Exoplanets: Discovery and Characterization (3)

This course will cover observational and theoretical ideas pertinent to planets orbiting other stars. Discovery and characterization techniques will be emphasized along with associated theory. In-class format will alternate from traditional lectures, guest lectures by local or visiting experts, and student-lead presentations.

Course Level Other: PTYS Graduate Elective

PTYS 590

Planetary Geology Field Studies (1)

The acquisition of first-hand experience with geologic processes and features, focusing on how those features/processes relate to the surfaces of other planets and how accurately those features/processes can be deduced from remote sensing data. This is a three- to five-day field trip to an area of geologic interest where each student gives a short presentation to the group. This trip typically involves camping and occasional moderate hiking; students need to supply their own camping materials. Students may enroll in the course up to 10 times for credit. Trip is led by a Planetary Sciences faculty member once per semester. Altnerative grading (SPF).

Course Level: PTYS Graduate ElectiveCourse Level Other: PTYS Graduate Elective

PTYS 596A

Planetary Surface Processes Seminar (1)

This seminar course will focus on discussion of planetary surfaces and their evolution, including geology of rocky planets and moons, icy surfaces and moons, regolith development, surface-atmosphere interactions, sub-surface structure and interiors, and climate change. The course will involve the exchange of scholarly information in a small group setting, including presentations and discussions of student research, reviews of recent science results and discussion of proposal ideas. Students will be expected to lead 1 to 2 presentations and participate in group discussions. This course is intended for graduate students; senior undergraduates may be able to enroll with permission of the instructor. Alternative Grading S, P, F; may be repeated for 10 completions/units.

Course Level: PTYS Graduate Elective